Refactor code structure for improved readability and maintainability, imporved matrix read, improved SB button read

This commit is contained in:
2025-12-06 09:03:02 +01:00
parent 60950e6a0c
commit 06fa584b6d
6 changed files with 211 additions and 91 deletions

View File

@@ -1,4 +1,7 @@
.pio .pio/libdeps
.pio/build/project*
.pio/build/esp32-s3-devkitm-1/*
!.pio/build/esp32-s3-devkitm-1/firmware.bin
.vscode/.browse.c_cpp.db* .vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json .vscode/c_cpp_properties.json
.vscode/launch.json .vscode/launch.json

View File

@@ -3,7 +3,8 @@
@author: Erik Tóth @author: Erik Tóth
@contact: etoth@tsn.at @contact: etoth@tsn.at
@date: 2025-10-26 @date: 2025-10-26
@brief: Header for FIRMWARE.cpp @updated: 2025-12-06
@brief: Header for FIRMWARE.cpp (FIXED)
*/ */
#include <Arduino.h> #include <Arduino.h>
#include <Wire.h> #include <Wire.h>
@@ -139,6 +140,7 @@ class SequencerBlock
unsigned long _lastStepTime; unsigned long _lastStepTime;
unsigned long _playStartTime; unsigned long _playStartTime;
unsigned long _stepStartTime; unsigned long _stepStartTime;
unsigned long _lastAddStepTime; // NEU: Rate-Limiting
// Status flags // Status flags
bool _isRecording; bool _isRecording;

View File

@@ -3,6 +3,7 @@
@author: Erik Tóth @author: Erik Tóth
@contact: etoth@tsn.at @contact: etoth@tsn.at
@date: 2025-10-26 @date: 2025-10-26
@updated: 2025-12-06
@brief: Header for constant definitions @brief: Header for constant definitions
*/ */
@@ -33,10 +34,10 @@
#define PIN_K_C3 5 // DEV. not in use #define PIN_K_C3 5 // DEV. not in use
#define PIN_K_C4 6 // DEV. not in use #define PIN_K_C4 6 // DEV. not in use
// SEQUENCER BUTTON PINS // SEQUENCER BUTTON PINS
#define PIN_SB_1_REC 37 // for PROD. change to 33 / not available on dev board #define PIN_SB_1_REC 42 // for PROD. change to 33 / not available on dev board
#define PIN_SB_1_PLAY 38 // for PROD. change to 34 / not available on dev board #define PIN_SB_1_PLAY 41 // for PROD. change to 34 / not available on dev board
#define PIN_SB_2_REC 35 #define PIN_SB_2_REC 40 // 35
#define PIN_SB_2_PLAY 36 #define PIN_SB_2_PLAY 39 // 36
// MISC/INFO PINS // MISC/INFO PINS
#define PIN_ACTIVE -1 // TODO: if any key is played return HIGH #define PIN_ACTIVE -1 // TODO: if any key is played return HIGH
#define PIN_REC -1 // TODO: if any sb is recording return HIGH #define PIN_REC -1 // TODO: if any sb is recording return HIGH

View File

@@ -3,7 +3,8 @@
@author: Erik Tóth @author: Erik Tóth
@contact: etoth@tsn.at @contact: etoth@tsn.at
@date: 2025-10-26 @date: 2025-10-26
@brief: Firmware for MCU @updated: 2025-12-06
@brief: Firmware für MCU - FIXED VERSION mit Bounds Checks
*/ */
#include "FIRMWARE.h" #include "FIRMWARE.h"
@@ -48,7 +49,7 @@ Keyboard::Keyboard(uint8_t nRows, uint8_t nCols, uint8_t *pinsRow, uint8_t *pins
void Keyboard::begin() void Keyboard::begin()
{ {
for(int i = 0; i < _nRows; i++) pinMode(_pinsRow[i], INPUT_PULLDOWN); for(int i = 0; i < _nRows; i++) pinMode(_pinsRow[i], INPUT_PULLDOWN);
for(int i = 0; i < _nCols; i++) pinMode(_pinsCol[i], OUTPUT); for(int i = 0; i < _nCols; i++) pinMode(_pinsCol[i], INPUT);
} }
void Keyboard::update() void Keyboard::update()
@@ -56,6 +57,7 @@ void Keyboard::update()
unsigned long now = millis(); unsigned long now = millis();
for(uint8_t col = 0; col < _nCols; col++) for(uint8_t col = 0; col < _nCols; col++)
{ {
pinMode(_pinsCol[col], OUTPUT);
digitalWrite(_pinsCol[col], HIGH); digitalWrite(_pinsCol[col], HIGH);
for(uint8_t row = 0; row < _nRows; ++row) for(uint8_t row = 0; row < _nRows; ++row)
{ {
@@ -79,6 +81,7 @@ void Keyboard::update()
} }
} }
digitalWrite(_pinsCol[col], LOW); digitalWrite(_pinsCol[col], LOW);
pinMode(_pinsCol[col], INPUT);
} }
if((_nActiveKeys == 1) && _inQueue(NOT_A_KEY)) _nActiveKeys = 0; if((_nActiveKeys == 1) && _inQueue(NOT_A_KEY)) _nActiveKeys = 0;
} }
@@ -231,7 +234,7 @@ uint8_t CV::_getKeyToVoltageIndex(Key k)
return (k.row*_col + k.col); return (k.row*_col + k.col);
} }
// ==================== SequencerBlock ==================== // ==================== SequencerBlock (FIXED) ====================
/*! /*!
* @param maxDurationMS maximum loop duration of recording in milliseconds * @param maxDurationMS maximum loop duration of recording in milliseconds
@@ -252,6 +255,7 @@ SequencerBlock::SequencerBlock(uint16_t maxDurationMS, uint16_t maxStepCount)
_lastStepTime = 0; _lastStepTime = 0;
_playStartTime = 0; _playStartTime = 0;
_stepStartTime = 0; _stepStartTime = 0;
_lastAddStepTime = 0; // NEU: Rate-Limiting
} }
void SequencerBlock::startRecord() void SequencerBlock::startRecord()
@@ -262,7 +266,8 @@ void SequencerBlock::startRecord()
_isRecording = true; _isRecording = true;
_recordStartTime = millis(); _recordStartTime = millis();
_lastStepTime = _recordStartTime; _lastStepTime = _recordStartTime;
_lastVoltageCh1 = 0xFFFF; // Ungültiger Wert zum Triggern des ersten Steps _lastAddStepTime = _recordStartTime; // NEU
_lastVoltageCh1 = 0xFFFF;
_lastVoltageCh2 = 0xFFFF; _lastVoltageCh2 = 0xFFFF;
} }
@@ -276,28 +281,54 @@ void SequencerBlock::stopRecord()
void SequencerBlock::addStep(uint16_t voltage_ch1, uint16_t voltage_ch2) void SequencerBlock::addStep(uint16_t voltage_ch1, uint16_t voltage_ch2)
{ {
// KRITISCHE SICHERHEITSPRÜFUNGEN ZUERST
if(!_isRecording) return; if(!_isRecording) return;
// Prüfe ob wir überhaupt noch Platz haben (mit Sicherheitsabstand!)
if(_stepCount >= _MAX_SEQUENCE_STEPS - 1)
{
Serial.println("\n\r[ERROR] Step limit reached! Stopping recording.");
stopRecord();
return;
}
if(timeLimitReached()) if(timeLimitReached())
{ {
Serial.println("\n\r[WARNING] Time limit reached! Stopping recording.");
stopRecord(); stopRecord();
return; return;
} }
unsigned long now = millis(); unsigned long now = millis();
// NEU: Rate-Limiting - ignoriere zu häufige Aufrufe
if((now - _lastAddStepTime) < 5) // Mindestens 5ms zwischen Updates
{
return;
}
_lastAddStepTime = now;
// Hat sich die Spannung geändert? // Hat sich die Spannung geändert?
bool voltageChanged = (voltage_ch1 != _lastVoltageCh1) || (voltage_ch2 != _lastVoltageCh2); bool voltageChanged = (voltage_ch1 != _lastVoltageCh1) || (voltage_ch2 != _lastVoltageCh2);
if(voltageChanged) if(voltageChanged)
{ {
// WICHTIG: Prüfe nochmal ob wir Platz haben BEVOR wir schreiben!
if(_stepCount >= _MAX_SEQUENCE_STEPS - 1)
{
Serial.println("\n\r[ERROR] Array full! Stopping recording.");
stopRecord();
return;
}
// Vorherigen Step abschließen (wenn vorhanden) // Vorherigen Step abschließen (wenn vorhanden)
if(_stepCount > 0) if(_stepCount > 0 && _stepCount <= _MAX_SEQUENCE_STEPS)
{ {
_finishCurrentStep(); _finishCurrentStep();
} }
// Neuen Step beginnen // Neuen Step beginnen - mit Bounds Check!
if(_canAddStep()) if(_stepCount < _MAX_SEQUENCE_STEPS)
{ {
_sequence[_stepCount].voltage_ch1 = voltage_ch1; _sequence[_stepCount].voltage_ch1 = voltage_ch1;
_sequence[_stepCount].voltage_ch2 = voltage_ch2; _sequence[_stepCount].voltage_ch2 = voltage_ch2;
@@ -312,7 +343,8 @@ void SequencerBlock::addStep(uint16_t voltage_ch1, uint16_t voltage_ch2)
else else
{ {
// Gleiche Spannung - Duration des aktuellen Steps aktualisieren // Gleiche Spannung - Duration des aktuellen Steps aktualisieren
if(_stepCount > 0) // WICHTIG: Bounds Check!
if(_stepCount > 0 && _stepCount <= _MAX_SEQUENCE_STEPS)
{ {
_sequence[_stepCount - 1].duration = now - _lastStepTime; _sequence[_stepCount - 1].duration = now - _lastStepTime;
} }
@@ -345,9 +377,37 @@ void SequencerBlock::update()
{ {
if(!_isPlaying || _stepCount == 0) return; if(!_isPlaying || _stepCount == 0) return;
// WICHTIG: Bounds Check BEVOR wir auf Array zugreifen!
if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS)
{
Serial.println("\n\r[ERROR] Invalid step index in update()!");
stopPlay();
return;
}
unsigned long now = millis(); unsigned long now = millis();
unsigned long elapsed = now - _stepStartTime; unsigned long elapsed = now - _stepStartTime;
// Sicherung gegen Division durch Null / Endlosschleife
if(_sequence[_currentStep].duration == 0)
{
_currentStep++;
_stepStartTime = now;
if(_currentStep >= _stepCount)
{
if(_loop)
{
_currentStep = 0;
}
else
{
stopPlay();
}
}
return;
}
// Prüfen ob aktueller Schritt abgelaufen ist // Prüfen ob aktueller Schritt abgelaufen ist
if(elapsed >= _sequence[_currentStep].duration) if(elapsed >= _sequence[_currentStep].duration)
{ {
@@ -386,7 +446,8 @@ void SequencerBlock::clear()
_lastVoltageCh1 = 0; _lastVoltageCh1 = 0;
_lastVoltageCh2 = 0; _lastVoltageCh2 = 0;
for(uint8_t i = 0; i < _MAX_SEQUENCE_STEPS; i++) // Optional: Array löschen (kann je nach Use-Case weggelassen werden)
for(uint16_t i = 0; i < _MAX_SEQUENCE_STEPS; i++)
{ {
_sequence[i].voltage_ch1 = 0; _sequence[i].voltage_ch1 = 0;
_sequence[i].voltage_ch2 = 0; _sequence[i].voltage_ch2 = 0;
@@ -411,7 +472,7 @@ bool SequencerBlock::timeLimitReached()
bool SequencerBlock::stepLimitReached() bool SequencerBlock::stepLimitReached()
{ {
return (_stepCount >= _maxStepCount); return (_stepCount >= _maxStepCount) || (_stepCount >= _MAX_SEQUENCE_STEPS);
} }
uint16_t SequencerBlock::getStepCount() uint16_t SequencerBlock::getStepCount()
@@ -422,7 +483,7 @@ uint16_t SequencerBlock::getStepCount()
uint16_t SequencerBlock::getCurrentVoltageCh1() uint16_t SequencerBlock::getCurrentVoltageCh1()
{ {
if(!_isPlaying || _stepCount == 0) return 0; if(!_isPlaying || _stepCount == 0) return 0;
if(_currentStep >= _stepCount) return 0; if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS) return 0;
return _sequence[_currentStep].voltage_ch1; return _sequence[_currentStep].voltage_ch1;
} }
@@ -430,24 +491,25 @@ uint16_t SequencerBlock::getCurrentVoltageCh1()
uint16_t SequencerBlock::getCurrentVoltageCh2() uint16_t SequencerBlock::getCurrentVoltageCh2()
{ {
if(!_isPlaying || _stepCount == 0) return 0; if(!_isPlaying || _stepCount == 0) return 0;
if(_currentStep >= _stepCount) return 0; if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS) return 0;
return _sequence[_currentStep].voltage_ch2; return _sequence[_currentStep].voltage_ch2;
} }
uint16_t SequencerBlock::getTotalDuration() uint16_t SequencerBlock::getTotalDuration()
{ {
uint16_t total = 0; uint32_t total = 0; // uint32 um Overflow zu vermeiden
for(uint8_t i = 0; i < _stepCount; i++) for(uint16_t i = 0; i < _stepCount && i < _MAX_SEQUENCE_STEPS; i++)
{ {
total += _sequence[i].duration; total += _sequence[i].duration;
} }
return total; return (total > 65535) ? 65535 : (uint16_t)total; // Clamp auf uint16
} }
void SequencerBlock::_finishCurrentStep() void SequencerBlock::_finishCurrentStep()
{ {
if(_stepCount == 0) return; if(_stepCount == 0) return;
if(_stepCount > _MAX_SEQUENCE_STEPS) return; // Sicherheitsprüfung
unsigned long now = millis(); unsigned long now = millis();
uint16_t duration = now - _lastStepTime; uint16_t duration = now - _lastStepTime;

View File

@@ -1,8 +1,9 @@
/* /*
* Example Code Three - Dual Channel Sequencer * Example Code Three - Dual Channel Sequencer (FIXED)
* TODO: * - Bounds Checks hinzugefügt
- add predefined sequence of voltage (e.g. for usage as startup sound) * - Rate-Limiting implementiert
- implement INFO and MISC pins form file FIRMWARE_DEF.h * - Debug-Ausgaben erweitert
* - Stack Overflow verhindert
*/ */
#include "FIRMWARE_DEF.h" #include "FIRMWARE_DEF.h"
#include "FIRMWARE.h" #include "FIRMWARE.h"
@@ -41,9 +42,17 @@ ButtonState btn_sb2_play;
const unsigned long DEBOUNCE_DELAY = 50; const unsigned long DEBOUNCE_DELAY = 50;
// Loop-Status für State Machine
static bool seq1_loop_active = false;
static bool seq2_loop_active = false;
// NEU: Tracking für Voltage Changes
static uint16_t last_voltage_ch1 = 0xFFFF;
static uint16_t last_voltage_ch2 = 0xFFFF;
bool readButton(byte pin, ButtonState &state) bool readButton(byte pin, ButtonState &state)
{ {
bool reading = digitalRead(pin) == HIGH; bool reading = digitalRead(pin) == LOW;
bool buttonPressed = false; bool buttonPressed = false;
if(reading != state.last) if(reading != state.last)
@@ -69,10 +78,10 @@ bool readButton(byte pin, ButtonState &state)
void initButtons() void initButtons()
{ {
pinMode(PIN_SB_1_REC, INPUT_PULLDOWN); pinMode(PIN_SB_1_REC, INPUT_PULLUP);
pinMode(PIN_SB_1_PLAY, INPUT_PULLDOWN); pinMode(PIN_SB_1_PLAY, INPUT_PULLUP);
pinMode(PIN_SB_2_REC, INPUT_PULLDOWN); pinMode(PIN_SB_2_REC, INPUT_PULLUP);
pinMode(PIN_SB_2_PLAY, INPUT_PULLDOWN); pinMode(PIN_SB_2_PLAY, INPUT_PULLUP);
btn_sb1_rec.current = false; btn_sb1_rec.current = false;
btn_sb1_rec.last = false; btn_sb1_rec.last = false;
@@ -93,7 +102,7 @@ void initButtons()
void handleSequencerButtons() void handleSequencerButtons()
{ {
// Sequencer 1 Record Button // ===== Sequencer 1 Record Button =====
if(readButton(PIN_SB_1_REC, btn_sb1_rec)) if(readButton(PIN_SB_1_REC, btn_sb1_rec))
{ {
if(sb1.isRecording()) if(sb1.isRecording())
@@ -106,58 +115,39 @@ void handleSequencerButtons()
{ {
if(sb1.isPlaying()) sb1.stopPlay(); if(sb1.isPlaying()) sb1.stopPlay();
sb1.startRecord(); sb1.startRecord();
last_voltage_ch1 = 0xFFFF; // Reset voltage tracking
last_voltage_ch2 = 0xFFFF;
Serial.printf("\n\r[SEQ1] Recording started (2 channels)..."); Serial.printf("\n\r[SEQ1] Recording started (2 channels)...");
} }
} }
// Sequencer 1 Play Button - 3 Modi: Play / Loop / Stop // ===== Sequencer 1 Play Button (3 Stati: Play / Loop / Stop) =====
if(readButton(PIN_SB_1_PLAY, btn_sb1_play)) if(readButton(PIN_SB_1_PLAY, btn_sb1_play))
{ {
if(!sb1.isPlaying()) if(!sb1.isPlaying())
{ {
// Nicht am Spielen -> Starte Playback (ohne Loop)
if(sb1.isRecording()) sb1.stopRecord(); if(sb1.isRecording()) sb1.stopRecord();
sb1.setLoop(false); sb1.setLoop(false);
seq1_loop_active = false;
sb1.startPlay(); sb1.startPlay();
Serial.printf("\n\r[SEQ1] Playback started (single)\n\r\tSteps: %i, Duartion: %ims", sb1.getStepCount(), sb1.getTotalDuration()); Serial.printf("\n\r[SEQ1] Playback started (single)\n\r\tSteps: %i, Duration: %ims",
sb1.getStepCount(), sb1.getTotalDuration());
}
else if(!seq1_loop_active)
{
sb1.setLoop(true);
seq1_loop_active = true;
Serial.printf("\n\r[SEQ1] Loop activated");
} }
else else
{ {
// Am Spielen -> Prüfe Loop-Status sb1.stopPlay();
if(!sb1.isPlaying()) // Falls schon gestoppt seq1_loop_active = false;
{ Serial.printf("\n\r[SEQ1] Playback stopped");
// Starte neu
sb1.setLoop(false);
sb1.startPlay();
Serial.printf("\n\r[SEQ1] Playback started (single)");
}
else
{
// Ist am Spielen - ermittle ob Loop aktiv ist
// Wir testen das indirekt: Wenn ein Sequencer am Ende angekommen ist
// und noch spielt, dann muss Loop aktiv sein
// Alternative: Wir tracken den Loop-Status selbst
static bool seq1_loop_active = false;
if(!seq1_loop_active)
{
// 2. Klick: Loop aktivieren
sb1.setLoop(true);
seq1_loop_active = true;
Serial.printf("\n\r[SEQ1] Loop activated");
}
else
{
// 3. Klick: Stop
sb1.stopPlay();
seq1_loop_active = false;
Serial.printf("\n\r[SEQ1] Playback stopped");
}
}
} }
} }
// Sequencer 2 Record Button // ===== Sequencer 2 Record Button =====
if(readButton(PIN_SB_2_REC, btn_sb2_rec)) if(readButton(PIN_SB_2_REC, btn_sb2_rec))
{ {
if(sb2.isRecording()) if(sb2.isRecording())
@@ -170,40 +160,35 @@ void handleSequencerButtons()
{ {
if(sb2.isPlaying()) sb2.stopPlay(); if(sb2.isPlaying()) sb2.stopPlay();
sb2.startRecord(); sb2.startRecord();
last_voltage_ch1 = 0xFFFF; // Reset voltage tracking
last_voltage_ch2 = 0xFFFF;
Serial.printf("\n\r[SEQ2] Recording started (2 channels)..."); Serial.printf("\n\r[SEQ2] Recording started (2 channels)...");
} }
} }
// Sequencer 2 Play Button - 3 Modi: Play / Loop / Stop // ===== Sequencer 2 Play Button (3 Stati: Play / Loop / Stop) =====
if(readButton(PIN_SB_2_PLAY, btn_sb2_play)) if(readButton(PIN_SB_2_PLAY, btn_sb2_play))
{ {
static bool seq2_loop_active = false;
if(!sb2.isPlaying()) if(!sb2.isPlaying())
{ {
// Nicht am Spielen -> Starte Playback (ohne Loop)
if(sb2.isRecording()) sb2.stopRecord(); if(sb2.isRecording()) sb2.stopRecord();
sb2.setLoop(false); sb2.setLoop(false);
seq2_loop_active = false; seq2_loop_active = false;
sb2.startPlay(); sb2.startPlay();
Serial.printf("\n\r[SEQ2] Playback started (single)"); Serial.printf("\n\r[SEQ2] Playback started (single)\n\r\tSteps: %i, Duration: %ims",
sb2.getStepCount(), sb2.getTotalDuration());
}
else if(!seq2_loop_active)
{
sb2.setLoop(true);
seq2_loop_active = true;
Serial.printf("\n\r[SEQ2] Loop activated");
} }
else else
{ {
if(!seq2_loop_active) sb2.stopPlay();
{ seq2_loop_active = false;
// 2. Klick: Loop aktivieren Serial.printf("\n\r[SEQ2] Playback stopped");
sb2.setLoop(true);
seq2_loop_active = true;
Serial.printf("\n\r[SEQ2] Loop activated");
}
else
{
// 3. Klick: Stop
sb2.stopPlay();
seq2_loop_active = false;
Serial.printf("\n\r[SEQ2] Playback stopped");
}
} }
} }
} }
@@ -211,8 +196,28 @@ void handleSequencerButtons()
void setup() void setup()
{ {
Serial.begin(BAUDRATE); Serial.begin(BAUDRATE);
delay(2000);
Serial.printf("\n\r=== FIXED VERSION v2 ===");
Serial.printf("\n\rSerial OK!");
keyboard.begin(); keyboard.begin();
cv.begin(PIN_SDA, PIN_SCL);
// Fehlerbehandlung für CV-Initialisierung
unsigned long timeout = millis() + 5000;
while(!cv.begin(PIN_SDA, PIN_SCL))
{
Serial.printf("\n\r[ERROR] CV initialization failed. Retrying...");
delay(500);
if(millis() > timeout)
{
Serial.printf("\n\r[FATAL] CV initialization timeout! Check I2C connection.");
break;
}
}
Serial.printf("\n\r[OK] CV initialized");
initButtons(); initButtons();
sb1.setLoop(false); sb1.setLoop(false);
@@ -227,11 +232,47 @@ void setup()
Serial.printf("\n\r 3rd click: Stop"); Serial.printf("\n\r 3rd click: Stop");
Serial.printf("\n\r PIN_SB_2_REC: SEQ2 Record Start/Stop (CH1+CH2)"); Serial.printf("\n\r PIN_SB_2_REC: SEQ2 Record Start/Stop (CH1+CH2)");
Serial.printf("\n\r PIN_SB_2_PLAY: SEQ2 Play Mode (same as SEQ1)"); Serial.printf("\n\r PIN_SB_2_PLAY: SEQ2 Play Mode (same as SEQ1)");
Serial.printf("\n\r");
Serial.printf("\n\rFIXES:");
Serial.printf("\n\r - Bounds checks in all array accesses");
Serial.printf("\n\r - Rate limiting (5ms) for addStep()");
Serial.printf("\n\r - Only call addStep() on voltage change");
Serial.printf("\n\r - Stack overflow prevention");
Serial.printf("\n\r==============================================\n\r"); Serial.printf("\n\r==============================================\n\r");
} }
void loop() void loop()
{ {
// ===== DEBUG HEARTBEAT =====
static unsigned long lastDebugPrint = 0;
static unsigned long loopCounter = 0;
loopCounter++;
// Debug-Ausgabe alle 5 Sekunden
if(millis() - lastDebugPrint > 5000)
{
Serial.printf("\n\r[HEARTBEAT] Loop count: %lu", loopCounter);
Serial.printf("\n\r[DEBUG] SB1: Rec=%d, Play=%d, Steps=%d",
sb1.isRecording(), sb1.isPlaying(), sb1.getStepCount());
Serial.printf("\n\r[DEBUG] SB2: Rec=%d, Play=%d, Steps=%d",
sb2.isRecording(), sb2.isPlaying(), sb2.getStepCount());
Serial.printf("\n\r[DEBUG] Free heap: %lu bytes", ESP.getFreeHeap());
lastDebugPrint = millis();
}
// ===== NON-BLOCKING TIMING SYSTEM =====
static unsigned long lastLoopTime = 0;
unsigned long now = millis();
const unsigned long LOOP_INTERVAL = 10; // 10ms
if((now - lastLoopTime) < LOOP_INTERVAL)
{
return; // Nicht blockierend
}
lastLoopTime = now;
// ===== NORMALE UPDATE-FUNKTIONEN =====
keyboard.update(); keyboard.update();
handleSequencerButtons(); handleSequencerButtons();
@@ -263,14 +304,27 @@ void loop()
} }
} }
// Bei Recording: Beide Kanäle aufnehmen // Bei Recording: Beide Kanäle aufnehmen - NUR bei Änderung!
bool voltageChanged = (voltage_ch1 != last_voltage_ch1) || (voltage_ch2 != last_voltage_ch2);
if(sb1.isRecording()) if(sb1.isRecording())
{ {
sb1.addStep(voltage_ch1, voltage_ch2); if(voltageChanged)
{
sb1.addStep(voltage_ch1, voltage_ch2);
last_voltage_ch1 = voltage_ch1;
last_voltage_ch2 = voltage_ch2;
}
} }
if(sb2.isRecording()) if(sb2.isRecording())
{ {
sb2.addStep(voltage_ch1, voltage_ch2); if(voltageChanged)
{
sb2.addStep(voltage_ch1, voltage_ch2);
last_voltage_ch1 = voltage_ch1;
last_voltage_ch2 = voltage_ch2;
}
} }
// CV-Ausgabe: Priorität hat Sequencer-Wiedergabe // CV-Ausgabe: Priorität hat Sequencer-Wiedergabe
@@ -306,6 +360,4 @@ void loop()
Serial.printf("\n\r[SEQ2] Final: Steps: %i, Duration: %ims", Serial.printf("\n\r[SEQ2] Final: Steps: %i, Duration: %ims",
sb2.getStepCount(), sb2.getTotalDuration()); sb2.getStepCount(), sb2.getTotalDuration());
} }
delay(10);
} }