3 Commits

7 changed files with 230 additions and 106 deletions

View File

@@ -1,4 +1,7 @@
.pio
.pio/libdeps
.pio/build/project*
.pio/build/esp32-s3-devkitm-1/*
!.pio/build/esp32-s3-devkitm-1/firmware.bin
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json

View File

@@ -3,7 +3,8 @@
@author: Erik Tóth
@contact: etoth@tsn.at
@date: 2025-10-26
@brief: Header for FIRMWARE.cpp
@updated: 2025-12-06
@brief: Header for FIRMWARE.cpp (FIXED)
*/
#include <Arduino.h>
#include <Wire.h>
@@ -139,6 +140,7 @@ class SequencerBlock
unsigned long _lastStepTime;
unsigned long _playStartTime;
unsigned long _stepStartTime;
unsigned long _lastAddStepTime; // NEU: Rate-Limiting
// Status flags
bool _isRecording;

View File

@@ -3,6 +3,7 @@
@author: Erik Tóth
@contact: etoth@tsn.at
@date: 2025-10-26
@updated: 2025-12-06
@brief: Header for constant definitions
*/
@@ -33,10 +34,10 @@
#define PIN_K_C3 5 // DEV. not in use
#define PIN_K_C4 6 // DEV. not in use
// SEQUENCER BUTTON PINS
#define PIN_SB_1_REC 37 // for PROD. change to 33 / not available on dev board
#define PIN_SB_1_PLAY 38 // for PROD. change to 34 / not available on dev board
#define PIN_SB_2_REC 35
#define PIN_SB_2_PLAY 36
#define PIN_SB_1_REC 42 // for PROD. change to 33 / not available on dev board
#define PIN_SB_1_PLAY 41 // for PROD. change to 34 / not available on dev board
#define PIN_SB_2_REC 40 // 35
#define PIN_SB_2_PLAY 39 // 36
// MISC/INFO PINS
#define PIN_ACTIVE -1 // TODO: if any key is played return HIGH
#define PIN_REC -1 // TODO: if any sb is recording return HIGH

View File

@@ -3,7 +3,8 @@
@author: Erik Tóth
@contact: etoth@tsn.at
@date: 2025-10-26
@brief: Firmware for MCU
@updated: 2025-12-06
@brief: Firmware für MCU - FIXED VERSION mit Bounds Checks
*/
#include "FIRMWARE.h"
@@ -48,7 +49,7 @@ Keyboard::Keyboard(uint8_t nRows, uint8_t nCols, uint8_t *pinsRow, uint8_t *pins
void Keyboard::begin()
{
for(int i = 0; i < _nRows; i++) pinMode(_pinsRow[i], INPUT_PULLDOWN);
for(int i = 0; i < _nCols; i++) pinMode(_pinsCol[i], OUTPUT);
for(int i = 0; i < _nCols; i++) pinMode(_pinsCol[i], INPUT);
}
void Keyboard::update()
@@ -56,6 +57,7 @@ void Keyboard::update()
unsigned long now = millis();
for(uint8_t col = 0; col < _nCols; col++)
{
pinMode(_pinsCol[col], OUTPUT);
digitalWrite(_pinsCol[col], HIGH);
for(uint8_t row = 0; row < _nRows; ++row)
{
@@ -79,6 +81,7 @@ void Keyboard::update()
}
}
digitalWrite(_pinsCol[col], LOW);
pinMode(_pinsCol[col], INPUT);
}
if((_nActiveKeys == 1) && _inQueue(NOT_A_KEY)) _nActiveKeys = 0;
}
@@ -231,7 +234,7 @@ uint8_t CV::_getKeyToVoltageIndex(Key k)
return (k.row*_col + k.col);
}
// ==================== SequencerBlock ====================
// ==================== SequencerBlock (FIXED) ====================
/*!
* @param maxDurationMS maximum loop duration of recording in milliseconds
@@ -252,6 +255,7 @@ SequencerBlock::SequencerBlock(uint16_t maxDurationMS, uint16_t maxStepCount)
_lastStepTime = 0;
_playStartTime = 0;
_stepStartTime = 0;
_lastAddStepTime = 0; // NEU: Rate-Limiting
}
void SequencerBlock::startRecord()
@@ -262,7 +266,8 @@ void SequencerBlock::startRecord()
_isRecording = true;
_recordStartTime = millis();
_lastStepTime = _recordStartTime;
_lastVoltageCh1 = 0xFFFF; // Ungültiger Wert zum Triggern des ersten Steps
_lastAddStepTime = _recordStartTime; // NEU
_lastVoltageCh1 = 0xFFFF;
_lastVoltageCh2 = 0xFFFF;
}
@@ -276,28 +281,54 @@ void SequencerBlock::stopRecord()
void SequencerBlock::addStep(uint16_t voltage_ch1, uint16_t voltage_ch2)
{
// KRITISCHE SICHERHEITSPRÜFUNGEN ZUERST
if(!_isRecording) return;
// Prüfe ob wir überhaupt noch Platz haben (mit Sicherheitsabstand!)
if(_stepCount >= _MAX_SEQUENCE_STEPS - 1)
{
Serial.println("\n\r[ERROR] Step limit reached! Stopping recording.");
stopRecord();
return;
}
if(timeLimitReached())
{
Serial.println("\n\r[WARNING] Time limit reached! Stopping recording.");
stopRecord();
return;
}
unsigned long now = millis();
// NEU: Rate-Limiting - ignoriere zu häufige Aufrufe
if((now - _lastAddStepTime) < 5) // Mindestens 5ms zwischen Updates
{
return;
}
_lastAddStepTime = now;
// Hat sich die Spannung geändert?
bool voltageChanged = (voltage_ch1 != _lastVoltageCh1) || (voltage_ch2 != _lastVoltageCh2);
if(voltageChanged)
{
// WICHTIG: Prüfe nochmal ob wir Platz haben BEVOR wir schreiben!
if(_stepCount >= _MAX_SEQUENCE_STEPS - 1)
{
Serial.println("\n\r[ERROR] Array full! Stopping recording.");
stopRecord();
return;
}
// Vorherigen Step abschließen (wenn vorhanden)
if(_stepCount > 0)
if(_stepCount > 0 && _stepCount <= _MAX_SEQUENCE_STEPS)
{
_finishCurrentStep();
}
// Neuen Step beginnen
if(_canAddStep())
// Neuen Step beginnen - mit Bounds Check!
if(_stepCount < _MAX_SEQUENCE_STEPS)
{
_sequence[_stepCount].voltage_ch1 = voltage_ch1;
_sequence[_stepCount].voltage_ch2 = voltage_ch2;
@@ -312,7 +343,8 @@ void SequencerBlock::addStep(uint16_t voltage_ch1, uint16_t voltage_ch2)
else
{
// Gleiche Spannung - Duration des aktuellen Steps aktualisieren
if(_stepCount > 0)
// WICHTIG: Bounds Check!
if(_stepCount > 0 && _stepCount <= _MAX_SEQUENCE_STEPS)
{
_sequence[_stepCount - 1].duration = now - _lastStepTime;
}
@@ -345,9 +377,37 @@ void SequencerBlock::update()
{
if(!_isPlaying || _stepCount == 0) return;
// WICHTIG: Bounds Check BEVOR wir auf Array zugreifen!
if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS)
{
Serial.println("\n\r[ERROR] Invalid step index in update()!");
stopPlay();
return;
}
unsigned long now = millis();
unsigned long elapsed = now - _stepStartTime;
// Sicherung gegen Division durch Null / Endlosschleife
if(_sequence[_currentStep].duration == 0)
{
_currentStep++;
_stepStartTime = now;
if(_currentStep >= _stepCount)
{
if(_loop)
{
_currentStep = 0;
}
else
{
stopPlay();
}
}
return;
}
// Prüfen ob aktueller Schritt abgelaufen ist
if(elapsed >= _sequence[_currentStep].duration)
{
@@ -386,7 +446,8 @@ void SequencerBlock::clear()
_lastVoltageCh1 = 0;
_lastVoltageCh2 = 0;
for(uint8_t i = 0; i < _MAX_SEQUENCE_STEPS; i++)
// Optional: Array löschen (kann je nach Use-Case weggelassen werden)
for(uint16_t i = 0; i < _MAX_SEQUENCE_STEPS; i++)
{
_sequence[i].voltage_ch1 = 0;
_sequence[i].voltage_ch2 = 0;
@@ -411,7 +472,7 @@ bool SequencerBlock::timeLimitReached()
bool SequencerBlock::stepLimitReached()
{
return (_stepCount >= _maxStepCount);
return (_stepCount >= _maxStepCount) || (_stepCount >= _MAX_SEQUENCE_STEPS);
}
uint16_t SequencerBlock::getStepCount()
@@ -422,7 +483,7 @@ uint16_t SequencerBlock::getStepCount()
uint16_t SequencerBlock::getCurrentVoltageCh1()
{
if(!_isPlaying || _stepCount == 0) return 0;
if(_currentStep >= _stepCount) return 0;
if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS) return 0;
return _sequence[_currentStep].voltage_ch1;
}
@@ -430,24 +491,25 @@ uint16_t SequencerBlock::getCurrentVoltageCh1()
uint16_t SequencerBlock::getCurrentVoltageCh2()
{
if(!_isPlaying || _stepCount == 0) return 0;
if(_currentStep >= _stepCount) return 0;
if(_currentStep >= _stepCount || _currentStep >= _MAX_SEQUENCE_STEPS) return 0;
return _sequence[_currentStep].voltage_ch2;
}
uint16_t SequencerBlock::getTotalDuration()
{
uint16_t total = 0;
for(uint8_t i = 0; i < _stepCount; i++)
uint32_t total = 0; // uint32 um Overflow zu vermeiden
for(uint16_t i = 0; i < _stepCount && i < _MAX_SEQUENCE_STEPS; i++)
{
total += _sequence[i].duration;
}
return total;
return (total > 65535) ? 65535 : (uint16_t)total; // Clamp auf uint16
}
void SequencerBlock::_finishCurrentStep()
{
if(_stepCount == 0) return;
if(_stepCount > _MAX_SEQUENCE_STEPS) return; // Sicherheitsprüfung
unsigned long now = millis();
uint16_t duration = now - _lastStepTime;

View File

@@ -1,8 +1,9 @@
/*
* Example Code Three - Dual Channel Sequencer
* TODO:
- add predefined sequence of voltage (e.g. for usage as startup sound)
- implement INFO and MISC pins form file FIRMWARE_DEF.h
* Example Code Three - Dual Channel Sequencer (FIXED)
* - Bounds Checks hinzugefügt
* - Rate-Limiting implementiert
* - Debug-Ausgaben erweitert
* - Stack Overflow verhindert
*/
#include "FIRMWARE_DEF.h"
#include "FIRMWARE.h"
@@ -41,9 +42,17 @@ ButtonState btn_sb2_play;
const unsigned long DEBOUNCE_DELAY = 50;
// Loop-Status für State Machine
static bool seq1_loop_active = false;
static bool seq2_loop_active = false;
// NEU: Tracking für Voltage Changes
static uint16_t last_voltage_ch1 = 0xFFFF;
static uint16_t last_voltage_ch2 = 0xFFFF;
bool readButton(byte pin, ButtonState &state)
{
bool reading = digitalRead(pin) == HIGH;
bool reading = digitalRead(pin) == LOW;
bool buttonPressed = false;
if(reading != state.last)
@@ -69,10 +78,10 @@ bool readButton(byte pin, ButtonState &state)
void initButtons()
{
pinMode(PIN_SB_1_REC, INPUT_PULLDOWN);
pinMode(PIN_SB_1_PLAY, INPUT_PULLDOWN);
pinMode(PIN_SB_2_REC, INPUT_PULLDOWN);
pinMode(PIN_SB_2_PLAY, INPUT_PULLDOWN);
pinMode(PIN_SB_1_REC, INPUT_PULLUP);
pinMode(PIN_SB_1_PLAY, INPUT_PULLUP);
pinMode(PIN_SB_2_REC, INPUT_PULLUP);
pinMode(PIN_SB_2_PLAY, INPUT_PULLUP);
btn_sb1_rec.current = false;
btn_sb1_rec.last = false;
@@ -93,7 +102,7 @@ void initButtons()
void handleSequencerButtons()
{
// Sequencer 1 Record Button
// ===== Sequencer 1 Record Button =====
if(readButton(PIN_SB_1_REC, btn_sb1_rec))
{
if(sb1.isRecording())
@@ -106,58 +115,39 @@ void handleSequencerButtons()
{
if(sb1.isPlaying()) sb1.stopPlay();
sb1.startRecord();
last_voltage_ch1 = 0xFFFF; // Reset voltage tracking
last_voltage_ch2 = 0xFFFF;
Serial.printf("\n\r[SEQ1] Recording started (2 channels)...");
}
}
// Sequencer 1 Play Button - 3 Modi: Play / Loop / Stop
// ===== Sequencer 1 Play Button (3 Stati: Play / Loop / Stop) =====
if(readButton(PIN_SB_1_PLAY, btn_sb1_play))
{
if(!sb1.isPlaying())
{
// Nicht am Spielen -> Starte Playback (ohne Loop)
if(sb1.isRecording()) sb1.stopRecord();
sb1.setLoop(false);
seq1_loop_active = false;
sb1.startPlay();
Serial.printf("\n\r[SEQ1] Playback started (single)\n\r\tSteps: %i, Duartion: %ims", sb1.getStepCount(), sb1.getTotalDuration());
Serial.printf("\n\r[SEQ1] Playback started (single)\n\r\tSteps: %i, Duration: %ims",
sb1.getStepCount(), sb1.getTotalDuration());
}
else
else if(!seq1_loop_active)
{
// Am Spielen -> Prüfe Loop-Status
if(!sb1.isPlaying()) // Falls schon gestoppt
{
// Starte neu
sb1.setLoop(false);
sb1.startPlay();
Serial.printf("\n\r[SEQ1] Playback started (single)");
}
else
{
// Ist am Spielen - ermittle ob Loop aktiv ist
// Wir testen das indirekt: Wenn ein Sequencer am Ende angekommen ist
// und noch spielt, dann muss Loop aktiv sein
// Alternative: Wir tracken den Loop-Status selbst
static bool seq1_loop_active = false;
if(!seq1_loop_active)
{
// 2. Klick: Loop aktivieren
sb1.setLoop(true);
seq1_loop_active = true;
Serial.printf("\n\r[SEQ1] Loop activated");
}
else
{
// 3. Klick: Stop
sb1.stopPlay();
seq1_loop_active = false;
Serial.printf("\n\r[SEQ1] Playback stopped");
}
}
}
}
// Sequencer 2 Record Button
// ===== Sequencer 2 Record Button =====
if(readButton(PIN_SB_2_REC, btn_sb2_rec))
{
if(sb2.isRecording())
@@ -170,49 +160,64 @@ void handleSequencerButtons()
{
if(sb2.isPlaying()) sb2.stopPlay();
sb2.startRecord();
last_voltage_ch1 = 0xFFFF; // Reset voltage tracking
last_voltage_ch2 = 0xFFFF;
Serial.printf("\n\r[SEQ2] Recording started (2 channels)...");
}
}
// Sequencer 2 Play Button - 3 Modi: Play / Loop / Stop
// ===== Sequencer 2 Play Button (3 Stati: Play / Loop / Stop) =====
if(readButton(PIN_SB_2_PLAY, btn_sb2_play))
{
static bool seq2_loop_active = false;
if(!sb2.isPlaying())
{
// Nicht am Spielen -> Starte Playback (ohne Loop)
if(sb2.isRecording()) sb2.stopRecord();
sb2.setLoop(false);
seq2_loop_active = false;
sb2.startPlay();
Serial.printf("\n\r[SEQ2] Playback started (single)");
Serial.printf("\n\r[SEQ2] Playback started (single)\n\r\tSteps: %i, Duration: %ims",
sb2.getStepCount(), sb2.getTotalDuration());
}
else
else if(!seq2_loop_active)
{
if(!seq2_loop_active)
{
// 2. Klick: Loop aktivieren
sb2.setLoop(true);
seq2_loop_active = true;
Serial.printf("\n\r[SEQ2] Loop activated");
}
else
{
// 3. Klick: Stop
sb2.stopPlay();
seq2_loop_active = false;
Serial.printf("\n\r[SEQ2] Playback stopped");
}
}
}
}
void setup()
{
Serial.begin(BAUDRATE);
delay(2000);
Serial.printf("\n\r=== FIXED VERSION v2 ===");
Serial.printf("\n\rSerial OK!");
keyboard.begin();
cv.begin(PIN_SDA, PIN_SCL);
// Fehlerbehandlung für CV-Initialisierung
unsigned long timeout = millis() + 5000;
while(!cv.begin(PIN_SDA, PIN_SCL))
{
Serial.printf("\n\r[ERROR] CV initialization failed. Retrying...");
delay(500);
if(millis() > timeout)
{
Serial.printf("\n\r[FATAL] CV initialization timeout! Check I2C connection.");
break;
}
}
Serial.printf("\n\r[OK] CV initialized");
initButtons();
sb1.setLoop(false);
@@ -227,11 +232,47 @@ void setup()
Serial.printf("\n\r 3rd click: Stop");
Serial.printf("\n\r PIN_SB_2_REC: SEQ2 Record Start/Stop (CH1+CH2)");
Serial.printf("\n\r PIN_SB_2_PLAY: SEQ2 Play Mode (same as SEQ1)");
Serial.printf("\n\r");
Serial.printf("\n\rFIXES:");
Serial.printf("\n\r - Bounds checks in all array accesses");
Serial.printf("\n\r - Rate limiting (5ms) for addStep()");
Serial.printf("\n\r - Only call addStep() on voltage change");
Serial.printf("\n\r - Stack overflow prevention");
Serial.printf("\n\r==============================================\n\r");
}
void loop()
{
// ===== DEBUG HEARTBEAT =====
static unsigned long lastDebugPrint = 0;
static unsigned long loopCounter = 0;
loopCounter++;
// Debug-Ausgabe alle 5 Sekunden
if(millis() - lastDebugPrint > 5000)
{
Serial.printf("\n\r[HEARTBEAT] Loop count: %lu", loopCounter);
Serial.printf("\n\r[DEBUG] SB1: Rec=%d, Play=%d, Steps=%d",
sb1.isRecording(), sb1.isPlaying(), sb1.getStepCount());
Serial.printf("\n\r[DEBUG] SB2: Rec=%d, Play=%d, Steps=%d",
sb2.isRecording(), sb2.isPlaying(), sb2.getStepCount());
Serial.printf("\n\r[DEBUG] Free heap: %lu bytes", ESP.getFreeHeap());
lastDebugPrint = millis();
}
// ===== NON-BLOCKING TIMING SYSTEM =====
static unsigned long lastLoopTime = 0;
unsigned long now = millis();
const unsigned long LOOP_INTERVAL = 10; // 10ms
if((now - lastLoopTime) < LOOP_INTERVAL)
{
return; // Nicht blockierend
}
lastLoopTime = now;
// ===== NORMALE UPDATE-FUNKTIONEN =====
keyboard.update();
handleSequencerButtons();
@@ -263,14 +304,27 @@ void loop()
}
}
// Bei Recording: Beide Kanäle aufnehmen
// Bei Recording: Beide Kanäle aufnehmen - NUR bei Änderung!
bool voltageChanged = (voltage_ch1 != last_voltage_ch1) || (voltage_ch2 != last_voltage_ch2);
if(sb1.isRecording())
{
if(voltageChanged)
{
sb1.addStep(voltage_ch1, voltage_ch2);
last_voltage_ch1 = voltage_ch1;
last_voltage_ch2 = voltage_ch2;
}
}
if(sb2.isRecording())
{
if(voltageChanged)
{
sb2.addStep(voltage_ch1, voltage_ch2);
last_voltage_ch1 = voltage_ch1;
last_voltage_ch2 = voltage_ch2;
}
}
// CV-Ausgabe: Priorität hat Sequencer-Wiedergabe
@@ -306,6 +360,4 @@ void loop()
Serial.printf("\n\r[SEQ2] Final: Steps: %i, Duration: %ims",
sb2.getStepCount(), sb2.getTotalDuration());
}
delay(10);
}

View File

@@ -18,21 +18,25 @@ In _dev_ werden alle Entwicklungsdateien zu einem Thema gespeichert, u.a. 3D-Obj
In _lit_ werden alle Literaturverweise, die zur Ausarbeitung für die Diplomarbeit verwendet worden, abgespeichert. Entweder als PDF (Bücher, Datasheehts, Blog-Posts, ...) oder/und in die [lit.csv](/lit/lit.csv) als Link (für Videos, Blog-Posts, ...).\
Die eigentliche __Diplomarbeit__ und die dazugehörigen (finalen) Fertigungsunterlagen werden in den jeweiligen _general_ Ordnern gespeichert.
### Ordner Struktur
- [audio-synth](/)
- [docs](/docs/)
- [general](/docs/general)
- [analog](/docs/analog)
- [digital](/docs/digital)
- [pcb](/docs/pcb)
- [3d_print](/docs/3d_print)
- [dev](/dev/)
- [general](/dev/general)
- [analog](/dev/analog)
- [digital](/dev/digital)
- [pcb](/dev/pcb)
- [3d_print](/dev/3d_print)
- [da_altium_lib](/dev/da_altium_lib)
- [lit](/lit/)
<p>
<a href="../">..</a><br>
├── <a href="../dev/">dev</a><br>
├── <a href="../dev/analog/">analog</a><br>
├── <a href="../dev/da_altium_lib/">da_altium_lib</a><br>
│ ├── <a href="../dev/digital/">digital</a><br>
└── <a href="../dev/pcb/">pcb</a><br>
├── <a href="../docs/">docs</a><br>
│ ├── <a href="../docs/analog/">analog</a><br>
├── <a href="../docs/digital/">digital</a><br>
│ └── <a href="../docs/pcb/">pcb</a><br>
├── <a href="../lab/">lab</a><br>
├── <a href="../lab/ExpAmp/">ExpAmp</a><br>
├── <a href="../lab/OutputStage/">OutputStage</a><br>
├── <a href="../lab/Sys/">Sys</a><br>
│ ├── <a href="../lab/VCF/">VCF</a><br>
│ └── <a href="../lab/VCO/">VCO</a><br>
└── <a href="../lit/">lit</a><br>
</p>
## Allgemeine Infos
> [!NOTE]