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Abstract

Since the heyday of analogue synthesizers in the 70’s, they have largely been replaced by
digital hardware and software synthesizers. However, in recent years, there has been a revival
in analogue designs, possibly due to its “warmer" sound. This projects aims to take part of this
renewal by building a simple analogue synth design with the most basic modules (e.g. oscilla-
tors, filters, mixers, amplifier), accompanied by a step sequencer for programming melodies.
This will be done by designing circuits and implementing them on breadboards.

The circuits were designed with inspiration from various online resources, along with the-
oretical analysis and simulation software for complex circuitry.

The result is a fully functional synthesizer with four sawtooth oscillators. The only modules
missing from the initial design are battery support and a line out output for recording the
output of the synthesizer. The pitch specification was met as the oscillator did not differ from
the expected frequency by more than +15 cents (hundredths of a semitone), for a range of five
octaves.

Some possible improvements include better step sequencer user friendliness by installing
a display to indicate the notes, more robustness by implementing the synth on a circuit board
instead of breadboard.

Some improvements can be made for the synth. For example, a display for the step se-
quencer would facilitate melody programming. Moreover, implementing the synth on a cir-
cuit board instead of breadboards would greatly improve robustness and reduce the risk of
sound disruptions.
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1 Introduction

When the first modern analogue synthesizers emerged in the 50’s and 60’s and later became pop-
ularized in the 70’s, they had a significant cultural impact, paving the way for electronic music.
Since then, the hardware digital synthesizers (hereafter "synth") of the 80’s and software synths of
subsequent decades has largely replaced the analogue synth due to reduced cost and increased
sound design capabilities [1].

In recent years however, there has been a analogue synth revival. This could be a counter
reaction to the perfected “sterile” sound of a digital synth; the transition to digital synths removed
the inherent imperfections of purely analogue synths, including pitch drift, noise and distortion.
While of course highly subjective, many agree that these flaws give character and warmth to the
synths [2]. Another reason might be a general longing for more hardware, as an escape from an
increasingly screen time intensive workflow for electronic music producers.

In other words, analogue synths has gained relevancy again. From a broad perspective, this
project aims to contribute culturally as a part of the analog resurgence, and to create a tool for
music performance. A more specified purpose and problem formulation is given below, following
a brief introduction to synth basics.

1.1 Synth basics

Before formulating a specified purpose for this project, brief explanations of the fundamental
modules of a synth are given. Many audio synthesis paradigms exist. In this project subtractive
synthesis, which amounts to sculpting a harmonically rich waveform with filters, will be used.
Below is a list of essential synth components along with short explanations.

1. An oscillator is a waveform generator. For synths the waveform should live in the audible
frequency range, i.e. 20-20000Hz. Common types of waves are sine, triangle, square and
sawtooth. The frequency of most audio-related oscillators is controlled with a voltage; the
common abbreviation VCO, as in voltage controlled oscillator will henceforth be used.

2. Filters are an integral part of subtractive synthesizers. Particularly, low pass filters are com-
monly used as they naturally make high frequency-rich wave forms sound softer (i.e. less
piercing high frequencies).

3. Mixers simply allow the users blend multiple VCO:s together (for synths with multiple
VCO:s).

It should be mentioned that some important module types, present in almost all commercial
synth designs, has been left out of the design, simply due to the scope of the project. These in-
clude envelope generators and low frequency oscillators, which are signal generators that control
other parameters, such as amplitude or filter cutoff frequency.

For a modern touch, a step sequencer will be included in the synth design. This is a pro-
grammable tool for generating sequential melodies that loop, common in repetitive genres such
as techno. In this project, the step sequencer will act as a substitute to a conventional claviature
keyboard as seen on most synths.

1.2 Problem formulation

The purpose of the project is to design circuits for all modules as seen in figure 1 and implement
them in hardware as a fully functional synth. For a successful project, all modules should be
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Figure 1: Block scheme for the synth design to be implemented in this project.

present and functional in the final build. In this design, VCO1-3 acts as drone oscillators (for
example playing chords), while the pitch of VCO4 is programmable with the step sequencer, and
will therefore act as a more flexible lead oscillator. VCO1-3 and VCO4 will have one low pass filter
each, and the relative volume level between all VCO:s can be set with the two mixers. The synth
design has two outputs: a built in speaker, preceded by an amplifier circuit, and a line out 3.5mm
mono output.

1.2.1 Pitch specification

A pitch specification for the synth is needed to ensure musical usability - the synth has to be in
tune to a certain degree. Before formulating a specification, a brief explanation of the mathemat-
ics behind basic western music theory is needed.

First and foremost, humans does not perceive pitch linearly: a 40Hz increase from 40Hz to
80Hz sounds like a bigger pitch jump than from 440Hz to 480Hz. Instead, a multiplication with
a set factor always sounds like the same musical interval, independent of frequency range. With
this in mind, the factor for any given interval can be found. An octave (doubling of frequency)
is split up into twelve semitones. In the following way, the factor between two neighbouring
semitones can be found, where f, is an octave above fi:

= nigmitonefl =2fi (1

Nsemitone = 212 = 1.05946... 2

Another less used interval is the cent, which is one hundredth of a semitone. Thus, its factor is:

Neont = 2% = 1.0005778 3)

Humans can distinguish intervals down to 5-6 cents [3]. For this synth design, the maximum
allowed detune is a slightly more generous 15 cents, referenced to an expected frequency. This,
analogously to the previous equations, leads to the following allowed frequency range:

=15 15
271200 fexpected < fmeasured < 271200 fexpected 4)



Or, equivalently:

< 15 cents (5)

|detune| = ‘1200 *log, (fmms)

exp

This should be fulfilled for all semitones in the playable range. A test procedure is explained in
the method section. Note that this specification only applies to VCOA4.

1.2.2 Step sequencer specification

The step sequencer should be programmable within a range of five octaves (including the limits),
with semitone precision. Its output is control voltage (CV), which controls the pitch of VCOA4.
The CV should follow the common 1V/oct standard, which means that an increase of one volt
in the CV will result in a doubled frequency, i.e. one octave jump upwards. To be consistent
with the pitch specification, a maximum of 0.0125 volt deviation will be allowed for the CV (this
corresponds to 15 cents). The control voltage should range from 0-5 volts to cover the specified
range of 5 full octaves.

1.3 Delimitations

The final build will of this project will be a prototype built on breadboards. The main focus is
on audio synthesis, not aesthetic design and user friendliness, although the latter will not be
completely neglected.

2 Theory and circuit design

In this section, the theory of each module will be presented, along with circuit designs. As also
explained further in the method section, the circuit have been designed with the help of existing
literature, theory and simulation software LTspice.

Observe that only the circuit structures are presented in the theory section; the actual com-
ponent values chosen for the circuits are presented in the material section (3.2).

2.1 Oscillators

As mentioned before, this synth will use a sawtooth wave for its four oscillators. A simple saw-
tooth wave can be built from a repetitive charging and discharging of a capacitor. The charging
phase is almost instantaneous and is realised with an inverting Schmitt trigger. This oscillator
principle belongs to the relaxation oscillator realm [4]. The capacitor is then discharged via the
variable current source. How quickly the capacitor is discharged depends on the capacitance and
current strength as will be explained soon. But first, the Schmitt trigger is described.

2.1.1 Inverting Schmitt trigger

A schmitt trigger is a type of comparator circuit with two thresholds. When the input voltage
sinks below the lower threshold, the output is activated (meaning that the voltage is set to the
inputted V;;). When the input voltage rises above the higher threshold, the output is instead
deactivated. This double threshold gap is called hysteresis, and is useful for feedback systems
with noisy signals.

Figure 2 shows the Schmitt trigger in the context of a sawtooth generator. The Schmitt trig-
ger output is activated whenever the voltage over the capacitor (which is at the same node as
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Figure 2: Basic relaxation oscillator as designed by Moritz Klein [5]. The capacitor Cys. is repeatedly instantaneously
charged by the Schmitt trigger, then slowly discharged by the current source. The buffer and high pass filter to the left
removes any DC offset to increase headroom for op-amps further down the signal chain.

the Schmitt trigger input) falls under the lower threshold. This results in an almost instanta-
neous voltage rise at the input node, and the Schmitt output is again deactivated. In this way, the
Schmitt trigger effectively deactivates itself directly, and therefore acts like a pulse generator.

2.1.2 Oscillator frequency

As aforementioned, the capacitor discharging speed (which is directly related to oscillator fre-
quency) is dependent on the current source strength I, capacitance Cy., but also on the Schmitt
trigger hysteresis, i.e. the voltage difference Vi between the lower and upper thresholds (since
the Schmitt trigger inherently prevents any other voltages). Note that before any attenuation or
amplification further down in the signal chain, the hysteresis V directly decides the amplitude
of the waveform. What the current source actually is is described in the exponential converter
section.

To find a theoretical expression for the oscillator frequency f, one can start with the basic
expression of a capacitor charge, and take its derivative with respect to time:

Q=CV (6)
d dv V
I.= d_? = Cosca = COSC?H = CoschH (7
I
= 8
f CochH

T is the period. Equation (8) shows that I, Cysc and Vg should be found such that the frequency
can be set between the audible frequency range of 20 to 20 000 Hz. The Schmitt trigger hysteresis
Vy is dependent on the component’s supplied voltage. The current source I, is set via the expo-
nential converter, but its useful range is fairly limited. The capacitor C,;. is then chosen to scale
the discharge speed to the audible region.

2.1.3 Offset removal

At the end of the oscillator signal chain, as seen in the lower right section of figure 2, an op-amp
buffer and a simple high pass filter is implemented. This is needed since the Schmitt trigger
hysteresis is centered around half of the supplied voltage, i.e. V;./2. The chosen Cyp and Ryp



should result in a low cut-off frequency f. that removes off-set (zero-frequency signals) but does
not affect the audible range. In other words, a cut-off frequency close to 0Hz is preferable.

1

- 9
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Now, the output voltage V,,; of the complete oscillator should be centered around zero. This
creates more headroom for op-amps further down the synth signal chain.

22 CV

According to the synthesizer specification, the control voltage from the step sequencer should
range from 0 to 5 volts. This is accomplished with from the Arduino via a digital-analog converter
(DAQ), further explained when discussing the step sequencer circuit in section 2.9.

2.3 Conversion from linear CV to exponential current

Until now, the current source in the oscillator has remained unexplained. As mentioned, the
main input to the oscillator, to steer its frequency, is the linear CV from the step sequencer. More-
over, the 1V/oct standard should be used, meaning that a CV increase of 1V should result in a
pitch octave, i.e. a doubling of frequency. From the oscillator description, in particular equation
8, the oscillator frequency is proportional to the current source I.. In summary, a circuit that con-
verts a linear voltage to a exponential current is needed. The resulting circuit is heavily inspired
by Klein [5], and is shown in figure 3. In the following sections, its functionality is described from
right to left, in reverse signal chain order. Note that only VCO4 need to convert CV coming from
a step sequencer. For VCO1-3, the voltage (and pitch) will instead be set using potentiometers.
Figure 4 shows the corresponding circuit for VCO1-3.
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Figure 3: Circuit for converting control voltage to an exponential current source for VCOA4.

2.3.1 NPN transistor: exponential converter

The actual exponential conversion happens in the last step of the circuit, at the NPN transistor.
It is often taught that the base-emitter voltage is a constant drop of 0.7V, due to the properties of
silicon. This holds for many applications, but in reality, the base-emitter voltage is a logarithmic
function of the current through the transistor; each time the collector current is doubled, the
base-emitter voltage increases by 18 mV (whether we look at collector, emitter or base current
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Figure 4: Circuit for converting control voltage to an exponential current source for VCO1-3. Note that there is no CV input
from any step sequencer here; the voltage that decides the oscillator pitch is set by the R¢oqarse and Ry, potentiometers.

here does not matter since the base- and emitter current are roughly proportional, and I, = I,— I,
) [6]. By looking at this function reversely, the collector current can roughly be seen as exponential
function of the base-emitter voltage Vpg:

I, = eaVBE+b (10)

Where a and b are some variables. Note that the domain of this function is quite limited - a high
base-emitter voltage would lead to unreasonably large currents.

2.3.2 PNP transistor: emitter follower

In theory, the NPN looks like a ready-to-use exponential converter. However, there is a problem:
The current through a transistor is temperature dependent - the variables a and b depends on
temperature. In terms of the synthesizer output, this means that the frequency will shift when-
ever the synth is heated or cooled. To be specific, the current through the NPN will increase with
increased temperatures, leading to a raised pitch. This could endanger the specification goal of
staying in tune within +15 cents.

Conveniently, a PNP transistor has the opposite response to temperature shifts. In figure 3,
itis inserted before the NPN, with the ambition of cancelling any temperature-induced collector
current shifts in the NPN transistor [6].

The PNP is inserted in the form of a so called emitter follower, which basically copies the base
voltage to the emitter, along with a voltage off-set. In this way, it does not affect the circuit much,
other than balancing out the temperature dependence.

2.3.3 Voltage formatting

It is important that the base voltage at the PNP transistor is within a range that ultimately leads
to audible frequencies. This is handled with voltage summing and dividing with resistors, poten-
tiometers and trim resistors as seen in the left side of figure 3. Recall that the CV is specified to
0-5V.

2.4 Filter

A simple low pass filter can be constructed by connecting a resistor and a capacitor in series to
ground. An expression for the output voltage (over the capacitor) can be derived by looking at
the circuit as a voltage divider. Finding the cut-off frequency f.(defined by yielding an amplitude
decrease of 3dB) is then easy:
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Figure 5: Filter 1 and filter 2 circuit. The filter design is a second order variable low pass filter, using simple buffers that
prevent the two filters from interfering with one another. The Ry index stands for stereo potentiometer - both resistance
values are simultaneously set by the same knob.
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The simple filter circuit is expanded in figure 5. Here, two first order filters are put in series,
effectively creating a second order filter. This will affect the sound more drastically with a filter
slope of 12dB/octave instead of 6dB/octave for the first order case. The potentiometer allows for
variable cut-off frequency. Note that both resistance values will be set simultaneously by a stereo
potentiometer (hence the sp subscript). The buffers hinder the two subfilters from affecting each
other.

For audio purposes, the filter cut-off should be variable within 20 to 20000 Hz. A 100nF capac-
itor and a 100kQ2 potentiometer achieves this, with f. approaching infinity as Ry, tends to zero,
and f. = 15.9 Hz with the potentiometer set to max. By setting the potentiometer to 0 Ohms, the
cut-off frequency approaches infinity.

2.5 Mixers

The mixer in this synth design are inverting adder circuits, preceded by a potentiometer for each
input signals for setting levels.

As seen in the synth block diagram (figure 1), there are two mixers in this design. Mixer 1
mixes signals from VCO1-3, while mixer 2 mixes the combined filtered signals from VCO1-3 and
the filtered VCO4 signal. Mixer 1 is shown in figure 6, and mixer 2 is identical but with only two
inputs, and is therefore left out.

v, o—uij
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V. L,o—uij
- H,‘,;
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R
v

oul

Rmzi’

Figure 6: Circuit for mixer 1. The inputs V7, V2 and V3 come from VCO1-3. Mixer 2 is identical, with the exception of only
having two inputs, coming from filter 1 and filter 2.



2.6 Amplifier circuit and speaker

The speaker is one of the synth outputs (the other being line out). To drive the speaker the signal
coming from mixer 2 must be amplified; the LM386 is a common amplifier in audio circuits and
is therefore used here. With its data sheet, a proposed speaker circuit is given, which is redrawn
in figure 7. [7]:

Coffstet
ual 4
1Y

Figure 7: Amplifier circuit with speaker. The design is taken from the LM386 data sheet, redrawn here.

2.7 Line out

Ry

VO ut
R

out

Figure 8: Simple line out circuit. Rr and R;; should be chosen such that the V,;; peak-to-peak is around 3 volts. To
further follow the line out standard, Ry should be chosen in the range of 100-500Q.

Line out is a standardized output for audio. Typical levels are 3 volts peak-to-peak and low
output impedance, 100-50092. This can simply be achieved by using an inverting amplifier, fol-
lowed by an output resistor within the range given above, as seen in figure 8. The amplification
gain is given by:

. Rp
Gain = -— (12)
in
As also mentioned later in the method section, the resistance values Rr and R;, can be de-
cided after measuring the input voltage, such that the output voltage peak-to-peak value resides
around 3 volts. The output signal V,,;,;; can then be connected to an 3.5mm aux jack port.

2.8 Power supply

During the construction and testing phase, the circuits will be powered by a power supply. For
better portability however, the synth should also be able to receive power via battery (9V). Since
the design needs both positive and negative V, (for example, all op-amps are powered with + V)
along with ground, a voltage inverter will be used. A voltage converter IC (such as the TL7660)
can, along with two additional capacitors as described in its data sheet [8], invert a DC voltage.
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Furthermore, some of the components (the Arduino, DAC and Schmitt triggers) need a power
supply of 5 volts. For this, a voltage regulator, which can downscale an input voltage, will be used.

2.9 Step sequencer hardware

The Arduino NANO will comprise the basis for the sequencer. Figure 9 shows a minimised step
sequencer circuit (multiple buttons and LEDs will be used), with signal flow generally going from
left to right. With simple button and potentiometer circuits (to the left in figure 9), the Arduino
will register digital and analog values respectively. The button will make use of the Arduino’s
internal pull-up resistor, as set in the code (see Appendix A), hence the subscript for Dy,,.

4VCC

pu A5 = | 1
I, gt
A 2L [
A in D out 2
5 R/ﬁd 7
NANO

Figure 9: Minimised circuit for step sequencer. For the actual implementation, the button and LED circuits will be mul-
tiplied. Digital inputs (with internal pull-up resistor activated) and analog inputs will be used for the buttons and poten-
tiometer, respectively. Analog and digital outputs will be used for DAC communication and LEDs, respectively.

As for the CV output, a digital-analog converter (DAC) will be used to set the voltages. A 12-bit
DAC has a resolution of 4096, which should be sufficient to satisfy the synthesizer specification
of +15 cents. For this project, the MCP4725 will be used. The pins are connected according to
its data sheet [9]. Pins 4 and 5, which handle communication, are connected to the Arduino’s A4
and A5 pins respectively. This last connection choice is to simplify programming, as explained in
section 3.3.2.

2.10 Step sequencer software

Some simple conversions, for example the potentiometer output to tempo, are needed in the
code. These are conversions are documented with comments in the code, see appendix A.

3 Method

3.1 Theoretical preparation

Most overall circuit structures for all synth modules were decided through existing circuit designs
from literature and the online “do it yourself” synth community.

The preliminary component values were chosen mainly in two ways: through theory accord-
ing to the equations presented in the theory sections and, for complex circuits, simulations in
the LTspice software.

The circuit diagrams were drawn with the Inkscape software.

11



3.2 Instruments and materials

Table 1: Material for VCO1-4

Component ‘ Value ‘ Qty ‘ Name
Diode 0.7V 4
Cosc 1InF 4
Schmitt trigger | 1.03V (hyst.) 2 SN74HC14N / CD40106BCN
op-amp 4 LM324N / OP77
Ryp 100kQ 4
Chp 1uF 4

When all modules had preliminary design with set component values, a complete component
list was compiled. All electrical components and their values can be found in tables 1-6b. All
tables are complete with component type (same name as in circuit figures in the theory section),
value, quantity and IC name where applicable.

Table 2: Material for exponential converters.

(a) Material for exponential converter VCO4. (b) Material for exponential converter for VCO1-3.
Component | Value ‘ Qty ‘ Name Component | Value ‘ Qty ‘ Name
NPN 1 BC547 NPN 3 BC547
PNP 1 2N3906 PNP 3 C32716
Re 1MQ 1 Re 1MQ 3
Pot 100kQ 1 Rcoarse 100kQ 3
Ravg 100kQ | 2 Ririm 10kQ | 3
Rscale 1kQ 1 Rgel 3.9kQ | 3
Ririm 1kQ 1 Ry 100kQ 3

Table 1 shows the material for all oscillators VCO1-4. The collector current from the NPN
transistor in the exponential converter was found (through LTspice simulations) to exhibit the
wanted exponential behaviour in the range of 66nA to 1.92 yA. The remaining values were de-
cided through equations 8 and 9, with the exception of the diode and Schmitt trigger hysteresis,
which are inherent values to the component type (the latter being found in the IC data sheet).

Table 3: Material for the two variable LP filters.

Component ‘ Value ‘ Qty ‘ Name

op-amp 4 LM324N
Stereo pot 100kQ 2
Crp 100nF 4

Table 2a and 2b show the chosen values for the voltage formatting and exponential convert-
ers, found mostly via LTspice simulations.

The material list for the two second order variable low pass filters are shown in table 3. The
capacitor Crp was chosen such that the lowest possible cut-off frequency would be sufficiently
low to effectively filter out the waveform completely, according to equation 11.

Tables 4a and 4b contain the mixer components. Note again that they are very similar in
design; mixer 2 is a copy of mixer 1 (as shown in figure 6) but with one less input.

12



Table 4: Material list for mixer 1 and mixer 2.

(a) Material for mixer 1. (b) Material for mixer 2.
Component | Value ‘ Qty ‘ Name Component | Value ‘ Qty ‘ Name
op-amp 1 0OP200 op-amp 1 LM324N
R 100kQ 4 R 100kQ 3
Pot 100kQ 3 Pot 100k 2
Rout 5600 1 Rout 5600 1

Table 5a shows the component values of the line out circuit. The resistors values of the invert-
ing amplifier in the circuit, seen in figure 8, was chosen after first measuring the maximum input
peak to peak voltage on the oscilloscope, in order to reach the desired output voltage amplitude
according to the line out standard.

Table 5: Material list for the line out circuit (a) and the speaker amplifier circuit (b).

(a) Material for line out circuit. (b) Material for amplifier circuit.
Component ‘ Value ‘ Qty ‘ Name Component | Value ‘ Qty ‘ Name
op-amp 1 LM324N Amp IC 1 LM386
Ripn 68kQ 1 Pot 10kQ 1
Rp 10kQ 1 R 10Q 1
Rour 560Q2 1 Cgffset 250uF 1
3.5mm out 1 2 C 50nF 1

The speaker amplifier circuit was, as mentioned, largely inspired by the LM386 data sheet,
which included a proposed amplifier circuit [7]. It also provided component values, which were
directly copied to this project and presented in table 5b.

Table 6: Material lists for the step sequencer and power supply.

(a) Material for the step sequencer hardware. (b) Material for portable power supply.
Component ‘ Value ‘ Qty ‘ Name Component ‘ Value ‘ Qty ‘ Name
Microcontroller 1 Arduino NANO Battery 9V 1
DAC 12-bit 1 MCP4725 Battery connector 1
Button 6 Voltage converter | 12-bit 1 ICL7660
Riea 560Q2 4 C 10uF 2
Led 4

Table 6a shows the components needed for the step sequencer.

Table 6b shows the components values for the power supply. As explained in the theory sec-
tion, the circuit needed for converting the voltage was provided by the ICL7660 data sheet. Ca-
pacitance values were also recommended.

When the list of components was completed, an inventory check was made. Missing com-
ponents were ordered. The ordering throughout the execution phase was done iteratively after
some design revisions were made, which caused some construction delay.

13



3.3

Execution

3.3.1 Hardware construction

Before construction began, some essential and beneficial tools were acquired. These are pre-
sented in table 7.

Table 7: Material and equipment for construction and testing.

Equipment Model/type

Breadboard Pro’sKit BX-4112N (Qty: 5)
Jumper cables
DC power supply Teknikum +12V & 5V supply

Oscilloscope Tektronix TBS 1152B-EDU
Multimeter AMPROBE AM-510-EUR
Connecting wire

Wire stripping tool

Component tester

In accordance with the delimitations stated in the introduction, the synthesizer was built as
a prototype on breadboards. Generally, each individual synth module was first built provision-
ally with jumper cables, to ensure that circuit design was functional (using the oscilloscope) in
practice and to test breadboard layouts. The general method was as follows:

1.

Fetch all needed components for the circuit according to the relevant material list. Use the
“component checker” to ensure that the component values are good.

Construct the circuit according to the circuit design figures, using jumper cables.

Test whether the circuit is functional using the oscilloscope, i.e. check if the output is ex-
pected.

Investigate any unexpected flaws:

(a) Double check circuit connections
(b) Check whether the involved components are functional
(c) Make design revisions

Iterate until the circuit is functional

Replace the jumper cables with manually cut connection wires using the wire stripping
tool.

This method allowed for quick revisions, while not spending time and effort cutting wires for a
possibly faulty circuit.

The above method explains the tactics for a single synth module. As for the whole synth, the
construction order was chosen such that any needed re-designs could be detected early in the
project phase (allowing for increased time margin for new component orders). This was done
by first building the lower signal chain in figure 1 (starting with VCO4), ensuring that all unique
circuit types were implemented and tried before duplicating them. Then, when assured that
all circuits were functional (or after needed revisions), the circuits could simply be duplicated
to the other signal chain, without the provisional jumper cable step. For example VCO4, when
complete, could basically be copied to VCO1-3. In a similar fashion, mixer 2 and filter 2 could be
copied to implement mixer 1 and filter 1 without much thought.
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3.3.2 Software (coding the step sequencer)

The Arduino IDE was used for programming the Arduino NANO. For simplified communication
between the DAC and the Arduino, the Adafruit. MCP4725 library was used. This library assumes
that pins A4 and A5 of the Arduino are connected to pins 4 and 5 of the DAC, respectively, which
explains the wiring in figure 9. The full code can be seen in appendix A.

The buttons needed some debouncing software to hinder functional glitches when pressing
them. This was done by inserting a time buffer of 50 milliseconds from the last button state
change before acting on a button press, a technique provided by the Arduino documentation
[10].

3.4 Pitch and CV test

To test whether the pitch and CV specifications were fulfilled, the VCO4 frequency was first scaled
using two different input voltages (1st and 3rd octaves). More precisely, the following algorithm
was used:

1. Make sure all semitones are set to 0.

2. Voltage offset: Set the step sequencer to play the first octave. Use R,frse (leftmost po-
tentiometer in figure 3) to tune VCO4 to play a frequency f.r of roughly 200Hz (this will
theoretically set the step sequencer range of 100-3200Hz).

3. Voltage scaling: Set the step sequencer to play the third octave. Use R;,;;; to tune VCO4
to play two octaves higher, i.e. 800Hz. Steps 2 and 3 might need several iterations as both
Roffser and Ry affect pitch.

4. Pitch test: Set the step sequencer to oct = 0. Let n = -1. Repeat untiln = 4:

(a) Calculate the expected frequency fexp =2" frer
(b) Measure the frequency of VCO4

(c) Calculate the detune according to equation 5, and check whether it is within the al-
lowed range of +15 cent.

(d) Alsomeasure the step sequencer CV output voltage (for controlling the step sequencer
specification).

(e) Letn=n+1

The semitones in between the octaves can be assumed to be well tuned if the octaves are.

4 Results and discussion
Firstly in the result and discussion section, the hardware implementation is presented, and it

is discussed whether the initial design idea is fulfilled. The outputted waveforms are then pre-
sented, after which the results from the pitch and CV tests are shown.
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4.1 Hardware implementation and layout

The hardware implementation of the synthesizer is shown in figure 10. All modules from the
general design specification scheme in figure 1 are present in the hardware expect for the line
out output and battery power support. All existing modules are fully functional (but have room
for improvement as will be discussed below). Generally, the signal chains flows from the sides to
the middle horizontally, with the step sequencer and VCO4 chain from the left and VCO1-3 from
the right. Further details are described in the caption of figure 10.

Figure 10: Final hardware implementation of the synthesizer. One can discern five breadboards; the leftmost comprise
the step sequencer. The second one hosts the CV exponential conversion, VCO4, and filter 2. The third (middle) hosts
filter 1, mixer 2, line out (not complete yet) and speaker amplifier circuit. The fourth breadboard hosts mixer 1 and
the high-pass filters of VCO1-3, while the right-most breadboard comprise the rest of VCO1-3 with their corresponding
exponential converters.

4.2 Sawtooth waveform qualities

Overall, the sawtooth waveforms generated from the oscillator circuits looks as expected. Figure
11 and 12 shows the waveform generated by VCO1 at the speaker output (with filter 1 completely
open) for alow (279.5Hz) and high (1.640kHz) frequency respectively. Since VCO2 and VCO3 use
the same Schmitt trigger IC, their result is here assumed to be similar enough to be left out here.

For the high frequency, one deviation from a pure sawtooth can be seen: there are ripples
occurring after each quick rise. For the lower frequency in figure 11, the ripples are also present.
Furthermore, one can see that the downwards ramp of the sawtooth is slightly convex for lower
frequencies. This curved ramp is not present earlier in the signal chain (as can be seen from the
filter screenshots in figure 13), and could therefore possibly be explained by a non-linearity at the
LM386 amplifier IC.

The ripples are not present earlier in the signal chain either, as is also evident from figure 13b.
The filter input signal, which is the same as the VCO4 output and is indicated by the yellow line,
does not have ripples. Figure 13a, where the filter is completely open (highest possible cut-off

16



(@D Mean 6.0mV @D Pcak-Peak

Figure 11: VCO1 279.5Hz waveform at speaker output. Compared to a pure sawtooth, this one has some ripples after
each high peak and slightly convex downward ramp.

‘@D Peak-Peak Ull Cycle RMS 859mV

| @B Period & Frequency

Figure 12: VCO1 1.640kHz waveform at speaker output. It looks like a pure sawtooth, except for the ripples at the peaks.

17



frequency), indicates that the ripples are created at least partly in the filter circuit (possibly by
the multiple op-amp buffers).

4.3 Filter behaviour

The filter behaves mostly as expected. Figure 13 shows the successive closure of filter 2 from
completely open to closed, e.g. with cut-off frequencies ranging from infinitely high (as the low-
pass filter potentiometers approaches zero Ohms) to 16.0 Hz.

e eak
Frequency

(a) Open filter (b) Almost open (high cut-off frequency)
I a'd

8 Trig'd

[Please wait.

(c) Almost closed (low cut-off frequency) (d) Closed filter (lowest possible cut-off frequency; approaching
0Hz according to equation 11

Figure 13: Successive closure of filter 2, with VCO4 as source. The yellow line shows the input, and the blue line shows
the filtered output.

When sweeping through the filter, the sound changes relatively smoothly. However, the “sweet
spot”, i.e. where the sound is perceived to change the most, of the filter is narrow. This is be-
cause of the linearity of the potentiometer; the resistance increases linearly with the knob posi-
tion. The following reasoning highlights why this is a problem: With the filter completely closed
(e.g. Rpor = 100kQ), the cut-off frequency is 16.0 Hz from equation 11. When opening the filter
halfway, (e.g. Rpo; = 50kQ), the cut-off frequency has only doubled to 31.9 Hz. For sawtooth
waveform with fundamentals in the normal range of 300Hz, the output is practically silent for
this wide range of knob positions.

The problem is still present for high cut-off frequencies. With the knob position at 90 , the
cut-off frequency is 159Hz. At 97.5 (Rpor = 2.5kQ), the cut-off frequency is 638Hz. There, the
knob position is not far from completely open, which results in theoretically infinitely high cut-
off frequency.

An exponential behaviour, where for instance a knob increase of 10 percentage points would
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consistently result in a doubled cut-off frequency, would broaden the sweet spot. This is also
common in commercial synths, and makes up a large potential improvement on this synth de-
sign. Replacing the linear stereo potentiometer in the design with a exponential one would
achieve this.

4.4 VCO4 pitch specification result

Here, the result for the pitch test, as described in the method section, is presented. Table 8a
shows the expected frequency for a range of five octaves, calculated from a reference, along with
measured frequency and detune. The detune is calculated using equation 5. The octave refers to
the octave set by the step sequencer. For this test, octave 1 was chosen as a reference at 211.67Hz.
As can be seen from the detune row, all other octaves are inside the allowed range of +15 cents,
so the pitch specification is fulfilled.

Octaves 1 trough 4 are precisely tuned, well below the 5-6 cent threshold perceptible by hu-
mans. The detune of the lowest and highest octaves are above that range however.

Table 8: Results from pitch test (a) and CV test (b).

(b) Result for CV specification test. Vexp shows the ex-

(a) Result for the pitch test. The first octave (oct=1) from the step se- pected voltage output from the step sequencer output,
quencer acts as reference frequency at 211.67Hz (bold), from which which coincides with the octave according to the 1V/oct
the other fexp are derived. From the measured frequencies fieas standard. Vjpeqs shows the measured voltage for each
for each octave, the detune is calculated from equation 5. All oc- octave. Compared to specified maximum deviation of
taves lie within the allowed range of +15 cents, so the pitch specifi- 0.0125V; the outputted voltage is slightly too high for octave
cation is met. 0, and too low for octaves 3 through 5.
Oct ‘ fexp [Hz] ‘ fmeas [Hz] ‘ Detune [cent] Oct ‘ Vexp ‘ Vineas | Deviation
0 105.8 107.2 +11.1 0 ov 0.0161V 0.0161V
1 N/A 211.67 N/A 1 1V 1.00V 0.00V
2 423.34 423.61 +0.554 2 2V 2.01V 0.01V
3 846.68 846.8 +0.123 3 3V 298V -0.02V
4 1693.36 1699 +2.88 4 4V 3.95V -0.05V
5 3386.72 3415 +7.22 5 5V 491V -0.09V

4.5 Step sequencer results

In this section, the hardware implementation of the step sequencer and its specification re-
sults are presented. Figure 14 shows the step sequencer hardware (here temporarily separated
from the rest of the synthesizer). One of the step sequencer specifications was for it to be pro-
grammable within a range of 5 octaves. This is realised with the four bottom-most buttons; from
left to right, their functionality is semitone down/up and octave down/up. Both button pairs
have a modulo behaviour, meaning for example that the octave jumps back to 0 if incremented
from 5. The upper right button increments the current step of the sequence to be set.

The buttons mentioned above are enough to cover the specified functions. In addition how-
ever, some further functionality was implemented. The three green LEDs indicate in binary
which step is currently programmed (i.e. which note of the melody is being changed). The se-
quence is eight notes long; for longer melodies, more LEDs need to be installed for correct step
indication.

The upper left button toggles between two modes: set and play. During play mode, the se-
quence loops continuously, and the melody can be programmed while listening to the whole

19



Figure 14: Caption

melody loop. During set mode, the current step is outputted instead of the loop, which facilitate
finding the wanted note. There is a small yellow LED between the right-most button and the Ar-
duino; during set mode, this LED is on constantly. During play mode, it flashes during the first
note of the sequence, effectively also indicating the tempo.

Lastly, the potentiometer to the left in figure 14 adjusts the tempo.

Now, the CV specification is presented and discussed. The outputted control voltages Vyeqs
from the DAC are presented and compared to the expected voltages in table 8b. The measured
voltages for octaves 0, 3, 4 and 5 deviate more than the specified maximum of 0.0125V, and does
therefore not meet the requirements.

In this synth, where the pitch scaling is manually tunable, this is not a problem since a trim
resistor adjustment can account for the low voltages. However, if the step sequencer is used
with another synthesizer with an 1V/oct input, the frequency of the oscillator will be too high for
octaves 0 and 2, and too low for octaves 3-5.

4.6 General discussion and possible improvements

As mentioned earlier, all modules except the line out output and battery support are imple-
mented in hardware. All modules implemented so far are functional, but there are however room
for improvements; already mentioned is the narrow filter sweet spot. Further possible improve-
ments are discussed below.

A display screen would be a significant upgrade to the step sequencer as it would greatly en-
hance user friendliness. With the current implementation, the user is rather blind when choosing
semitone and octaves for each step - a screen indicating which note is selected would facilitate
melody programming immensely.

A second improvement would be to implement the whole synth on a circuit board (although
a breadboard prototype implementation was the intended goal for this project). The breadboard
construction is rather fragile, which is not optimal for such a hands-on tool as a synth. For in-
stance, some of the potentiometers tend to loosen from the breadboard when twisted, causing
sound disruptions and sudden pitch changes.
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5 Conclusions

In general, the results of this project has been satisfactory. Electrical circuits has been designed
for all modules present in the initial design idea (figure 1), and most of them (excluding line out
and battery support) have been implemented in hardware with functional results.

The pitch specification has been met - the measured frequency does not differ from the ex-
pected frequency more than +15 cents for a range of 5 octaves including the high octave limit.
Moreover, for octaves 1 through 4, the pitch detune does not exceed even 3 cents, well below the
specified allowed threshold.

However, the step sequencer output does not meet the specified requirements. As was shown
in table 8b, the measured output control voltages differed from the expected voltages, which
would lead to out-of-tune oscillators when connected to any other synth using the 1V/oct stan-
dard.

There are room for improvements in many different aspects. For enhanced user friendliness,
a display showing which note is selected would greatly improve the melody generation workflow.
For improved packaging and robustness, the synth could have been implemented on a circuit
board with soldered components - this would furthermore improve the aesthetics and portability
of the synth. For improved sound generation, exponential stereo pots could have been used in
the second order low pass filters. This would have broadened the filter cut-off sweet spot, and
thus facilitate pleasing sound settings.
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6 Populirvetenskaplig sammanfattning

De analoga syntharna hade sin storhetstid pa 70-talet. Som namnet antyder anviande sig dessa
av analoga kretsar for att generera ljud - med denna analoga 16sning (med kontinuerliga signaler
till skillnad fran den digitala varldens binéra system) tillkom imperfektioner sdsom brus och ton-
héjdsavvikelser, som enligt manga bidrog till ett varmt ljud. P& senare ar har de analoga syn-
tharna gjort ndgot av en comeback, efter att under decennier i allt storre utstrackning ha ersatts
av digitala synthar i bAde hard- och mjukvaruformat.

Malet med detta projekt ér ta del av denna analoga panyttfodelse i musikproduktionsvirlden,
genom att designa en enkel analog synth utifran tidigare projekt, elektronikteori och simuler-
ingsprogram, samt implementera denna i hardvara. Resultatet blev en fullt funktionell synth
med bland annat fyra oscillatorer (ljudkéllor), tva lagpassfilter (som skulpterar ljudkéllorna och
kan goraljudet mindre diskant), tvd mixers for att stilla in ljudnivéer oscillatorerna emellan, samt
en forstarkarkrets med tillhérande hogtalare. I tilldgg har en digital step sequencer (verktyg for
programmerbar melodigenerering) lagts till.

I stort fungerar synthen som véntat. I skrivande stund saknas dock stdd for batteridrift samt
mojlighet att spela in synthens output (via en line out-utgéng). Oscillatorn kan spela rent; dess
tonhojdsavvikelse understiger den 6vre gréansen (enligt specifikationen) pé 15 hundradelars halv-
ton 6ver ett spann av fem oktaver.

Det finns flertalet méjliga forbattringar av synthen. Anvindarvénligheten for step sequencern
kan forbiattras med en skidrm for att bland annat indikera vilken ton som valts - i nuldget sker
denna instéllnignen i blindo. Dértill kunde sjdlva hardvaruimplementeringen med fordel kunnat
ske pa ett kretskort istdllet for den nuvarande breadboardlosningen som dr instabil och ger ett
valdigt provisoriskt intryck.
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7 Reflektion kring arbetets hallbarhetsaspekt

I detta avsnitt diskuteras projektet utifran ett hallbarhetsperspektiv, med avstamp frén tre av FN:s
héllbarhetsmal (Sustainable Development Goals ; SDG).

¢ Mal 12: hallbar konsumtion och produktion Att synthen byggdes pa breadboards i detta
projekt kan anses som direkt positivt for detta mal - de komponenter som anvéndes i kret-
sarna kan enkelt plockas isir igen och ateranvindas. Dessutom har ménga av synthens
komponenter anvints i andra projekt tidigare. Denna cirkulédra produktion dr dock svarare
att genomfora ifall synthen i forldangingen skulle produceras kommerciellt; mdnga mod-
erna hérdvarusynthar produceras med ytmontering med s& pass sma kretsar att de blir
svara att reparera vid eventuella skador [11]. Detta paverkar mal 12 negativt, dd mindre
elektronik repareras och atervinns, och istéllet ersitts av nyproducerat.

¢ Mal 15: ekosystem och biologisk méangfald. (Denna diskussionspunkt 6verlappar dven
med mal 12, se ovan). For férenkling av diskussionen av denna punkt dras detta pro-
jekt héllbarhetsaspekter i forlangingen till synthbranchen i stort. Som del av elektron-
ikbranchen finns en stor risk att synthbranchen bidrar till milj6férsdmringar kring gruvor.
Exempelvis anvinds neodymium i ménga synthar, framforallt i drivarkretsar fér horlurar
och hogtalare [12].

¢ Mal 3: god hilsa och vilbefinnande. Projektet kan anses bidra indirekt positivt till detta
mal. Ett av projektets dvergripande syften var att i forlangingen bidra kulturellt, genom att
skapa ett verktyg for musikalisk gestaltning. Att ha mojlighet att utova sin hobby bidrar sdk-
erligen till vialbefinnande, och detta projekt bidrar till ytterligare redskap for detta. Det dr
emellertid diskutabelt huruvida den faktiska hardvaran bidrar till detta - en betydligt mer
resurssndl mjukvaruemulering av en analog synth bor dven den bidra till vdlbefinnande
(aven om just 6nskad minskad skdrmtid dr en férekommande orsak till hardvaruinkop
inom musikproduktion).
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8 Appendix A: Arduino code

#include <Wire.h>

#include <Adafruit_MCP4725.h>
Adafruit_MCP4725 dac;

#define DAC_RESOLUTION (9)

// debounce (inspired by https://docs.arduino.cc/built-in-examples/digital/
Debounce)

unsigned long prevDebounceTime = O0; // the last time the output pin was
toggled

unsigned long debounceBuffer = 50;

// sequencer variables & consts

const int MAX_STEPS = 8;

byte step_played = 0; // step currently played by sequencer
byte step_set = 0; // step currently set by user

bool PLAY_MODE = true; // True = Play mode, False = Set mode
int period = 500;

unsigned long current_time;

// Musical constants

const int MAX_SEMITONES = 13; //octave included
const int MAX_OCTAVE = 5;

const int tempo_lower = 10;

const int tempo_upper = 200;

int tempo_val 0; //value from analog input [0, 1023], set by pot.
float tempo; //tempo converted to [tempo_lower , tempo_upper]

int MAX_NOTES = 12*MAX_OCTAVE + 1; //include uppermost octave
// mnote type, including octave and semitone
typedef struct {
int oct;
int semi;
} note_type;
// sequence of notes to be played
note_type sequence [MAX_STEPS];
const byte pin_octUp = 8; //D8

const byte pin_octDwn = 7; //D7

const byte pin_semiUp = 6; //D6
const byte pin_semiDwn = 5; //D5

const byte pin_step = 4; //D4
const byte pin_tempo = A1l;

//button state variables
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87

89

91

105

107

109

111

byte octUp_state, octUp_prev;
byte octDwn_state, octDwn_prev;

byte semiUp_state, semiUp_prev;
byte semiDwn_state, semiDwn_prev;

byte step_state, step_prev;

const int scale = 4095;

void setup(void) {
Serial.begin (9600) ;
Serial.println("MCP4725A1 Test'");
dac.begin (0x60) ;

pinMode (pin_octUp, INPUT_PULLUP);
pinMode (pin_octDwn, INPUT_PULLUP);
pinMode (pin_semiUp, INPUT_PULLUP);
pinMode (pin_semiDwn, INPUT_PULLUP);
pinMode (pin_step, INPUT_PULLUP);

// initialise sequence to octave 1, semitone O.
for(int i = 0; i < MAX_STEPS; i++) {

sequence [i].oct = 1;

sequence[i].semi = 0;

};

delay (1000) ;

current_time = millis();
void loop(void) {

/17777777777/77/7/ OCT UP [/////////////////7/777777777777777

int reading_octUp = digitalRead(pin_octUp);

if (reading_octUp != octUp_prev) {
prevDebounceTime = millis();

}

if ((millis() - prevDebounceTime) > debounceBuffer) {
if (reading_octUp != octUp_state) {

octUp_state = reading_octUp;

if (octUp_state == HIGH) {

sequence [step_set].oct = mod(sequence[step_set].oct + 1,
1);

Serial.println(sequence[step_set].oct);

}
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139
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143

octUp_prev = reading_octUp;

/1711777 /7//7/7// OCT DOWN ////////////////////////////////

int reading_octDwn = digitalRead(pin_octDwn);
if (reading_octDwn != octDwn_prev) {
prevDebounceTime = millis();
}
if ((millis() - prevDebounceTime) > debounceBuffer) {
if (reading_octDwn != octDwn_state) {
octDwn_state = reading_octDwn;
if (octDwn_state == HIGH) {
sequence [step_set].oct = mod(sequencel[step_set].oct - 1, MAX_OCTAVE +
13
Serial.println(sequence[step_set].oct);
}
}
}
octDwn_prev = reading_octDwn;

/1777777777777 77 SEMI UP //////////////////////////////////
int reading_semiUp = digitalRead(pin_semiUp);

if (reading_semiUp != semiUp_prev) {
prevDebounceTime = millis();

}
if ((millis() - prevDebounceTime) > debounceBuffer) {

if (reading_semiUp != semiUp_state) {
semiUp_state = reading_semiUp;

if (semiUp_state == HIGH) {
sequence [step_set].semi = mod(sequence[step_set].semi + 1,
MAX_SEMITONES) ;
Serial.println(sequence[step_set].semi);
}
}
}

semiUp_prev = reading_semiUp;

/1777777/777777/ SEMI DOWN ////////////77//11//777111//77//
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207
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219
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int reading_semiDwn = digitalRead(pin_semiDwn);

if (reading_semiDwn != semiDwn_prev) {
prevDebounceTime = millis();

}
if ((millis() - prevDebounceTime) > debounceBuffer) {

if (reading_semiDwn != semiDwn_state) {
semiDwn_state = reading_semiDwn;

if (semiDwn_state == HIGH) {
sequence [step_set].semi = mod(sequence[step_set].semi - 1,
MAX_SEMITONES) ;
Serial.println(sequence[step_set].semi);
}
}
}

semiDwn_prev = reading_semiDwn;

1177777777777 77777777 STEP [///////////777777777777777777

int reading_step = digitalRead(pin_step);

if (reading_step != step_prev) {
prevDebounceTime = millis();
}
if ((millis() - prevDebounceTime) > debounceBuffer) {
if (reading_step != step_state) {
step_state = reading_step;
if (step_state == HIGH) {

step_set = mod(step_set + 1, MAX_STEPS);
Serial.println(step_set);
}

step_prev = reading_step;

/177777777777 TEMPQ /////////////////

tempo_val = analogRead(pin_tempo);

// Map 0-1023 to BPM range
tempo = tempo_val*(float(tempo_upper-tempo_lower)/1023.0)+float (tempo_lower
)

//Map BPM to sixteenth note duration

//BPM bpm = BPM/60 bps <==> 60/BPM sec/beat <===>
// ...15/BPM sec/16th ===> 15000/BPM millisec/16th
period = round(15000.0/tempo); //milliseconds
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[177777777777777777777777 PLAY [/////777777777777777777777777777

if (millis() > current_time + period) {
step_played = (step_played + 1) 7 MAX_STEPS;

//prints current step, octave and semitone
Serial.print("step: ");

Serial.print(step_played);

Serial.print (" oct:");

Serial.print (sequence[step_played].oct);

Serial.print (" semi:");

Serial.print (sequence[step_played].semi);

Serial.print(’\n’);

toDAC (sequence[step_played].oct, sequencel[step_played].semi);
current_time = millis();

}

//toDAC: converts the chosen octave and semitone to a value between O and
4095

//and tells the DAC to output the corresponding voltage

void toDAC(int oct, int semitone) {
int fullnote = 12%oct + semitone;
float CV = round(fullnote*(4095/MAX_NOTES)); //49 semitones possible
dac.setVoltage (CV, false);

¥

//a mod function that handles negative inputs (as opposed to the % operator)
// inspired by cwalger’s answer: https://forum.arduino.cc/t/modulo-with-
negative-int/158317/6
int mod(int a, int b) {
return a < 0 ? ((a+1) % b) + b-1 : a%b;
}

DAC_test.ino
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