14 Commits

Author SHA1 Message Date
unknown
08ff8112f3 Merge branch 'main' of https://github.com/erik-toth/audio-synth 2025-12-03 13:20:02 +01:00
unknown
aec2400c5a Labor-Aufbau Gesamt 2025-12-03 13:19:34 +01:00
1947164f08 DA Library V3.0
Refactor 3D PCB, removing unused components
2025-12-03 13:13:36 +01:00
Erik Tóth
20c7b413d2 Upload Fotos Laboraufbau Gesamt 2025-12-02 21:28:27 +01:00
99c2542890 Merge branch 'main' of github.com:erik-toth/audio-synth 2025-12-01 22:46:12 +01:00
855fd01821 Firmware MCU: Update sequencer block to support dynamic step count and enhance documentation 2025-12-01 22:45:58 +01:00
Erik Tóth
f86db9c917 Update TO-DO list to mark simulations as complete 2025-12-01 16:21:14 +01:00
b106859252 Firmware MCU: Readme hinzugefügt als Erklärung --> später DA 2025-11-30 22:26:23 +01:00
dac90a977b Firmware MCU: Sequencer, erfassen und widergabe im Sequencerblock von beiden Channel, playback im single und loop modus, test OK 2025-11-30 20:20:05 +01:00
ce4e6cb536 LM386 Schaltung angepasst 2025-11-28 11:19:18 +01:00
unknown
ae7b6f6114 Laboraufbau + Messung VCF 2025-11-27 19:40:42 +01:00
Erik Tóth
aae20f701c VCO Bilder Aufbau 2025-11-25 22:59:44 +01:00
Erik Tóth
173c031371 Output Stage Aufbau Bilder 2025-11-25 22:58:40 +01:00
Erik Tóth
9705029f0a Output Stage Update
Schaltung neu aufgebaut, neu simuliert, bei Erik mit Analog Discovery überprüft, OK
2025-11-25 22:48:51 +01:00
202 changed files with 3603 additions and 4879 deletions

File diff suppressed because one or more lines are too long

View File

@@ -1,98 +1,32 @@
ETOTH-Amp_LM386
*SPICE Netlist generated by Advanced Sim server on 21.11.2025 08:22:05
*SPICE Netlist generated by Advanced Sim server on 28.11.2025 11:11:11
.options MixedSimGenerated
*Schematic Netlist:
CC1 NetC1_1 NetC1_2 47nF
CC_VCM1 NetC_VCM1_1 GND 47uF
CC_VCM2 VAP NetC_VCM1_1 47uF
CCblock NetC1_2 NetCblock_2 220uF
CCblock1 NetCblock1_1 NetCblock1_2 47uF
XIC1C NetIC1_10 NetC_VCM1_1 VAP GND NetIC1_8 TL074
XIC2 NetIC2_1 GND NetCblock1_2 GND NetC1_2 VAP NetIC2_7 NetIC2_8 LM386
LL_Speaker GND NetL_Speaker_2 0.1mH
RR1 NetC1_1 GND 10R
CC_DCBLOCK_IN IN NetC_DCBLOCK_IN_2 10uF
CC_DCBLOCK_OUT NetC_DCBLOCK_OUT_1 OUT 220uF
XIC1A NetIC1_1 0 NetIC1_3 0 NetC_DCBLOCK_OUT_1 VAP NetIC1_7 NetIC1_8 lm386
XIC1B NetIC1_1 0 NetIC1_3 0 NetC_DCBLOCK_OUT_1 VAP NetIC1_7 NetIC1_8 lm386
LL_Speaker 0 NetL_Speaker_2 0.1mH
RR_POTA 0 NetR_POT_2 {10k * {POS}}
RR_POTB NetR_POT_2 NetR_POT_3 {10k - (10k * {POS})}
RR_rs1 NetIC1_10 VAP 470k
RR_rs2 GND NetIC1_10 470k
RR_Speaker NetL_Speaker_2 NetCblock_2 8R
RR_static1 NetCblock1_1 NetR_POT_2 9400R
RR_static2 0 NetCblock1_1 600R
QT_rsN GND NetIC1_8 NetC_VCM1_1 2N2907
QT_rsP VAP NetIC1_8 NetC_VCM1_1 2N2222
VU_q VAP GND 10V
VU_VCM_CURRENT 0 NetC_VCM1_1 0
VUin NetR_POT_3 0 DC 0 SIN(0 2 440Hz 0 0 0) AC 1 0
RR_POTB NetR_POT_2 NetC_DCBLOCK_IN_2 {10k - (10k * {POS})}
RR_Speaker NetL_Speaker_2 OUT 8R
RR_static1 NetIC1_3 NetR_POT_2 100k
RR_static2 0 NetIC1_3 10k
VU_q VAP 0 10V
VUin IN 0 DC 0 SIN(5 2 220 0 0 0) AC 1 0
.PLOT TRAN {v(R_Speaker)+v(L_Speaker)} =PLOT(1) =AXIS(1) =NAME(U_speaker) =UNITS(V) =RGB(0, 255, 0)
.PLOT TRAN {i(R_Speaker)} =PLOT(2) =AXIS(1) =NAME(I_speaker) =UNITS(A)
.PLOT TRAN {p(R_Speaker)} =PLOT(3) =AXIS(1) =NAME(P_speaker) =UNITS(W)
.PLOT TRAN {i(U_VCM_CURRENT)} =PLOT(4) =AXIS(1) =NAME(I_VCM) =UNITS(A)
.PLOT TRAN {v(VAP)} =PLOT(1) =AXIS(1) =RGB(255, 0, 0)
.PLOT TRAN {v(GND)} =PLOT(1) =AXIS(1) =RGB(0, 0, 255)
.PLOT TRAN {i(Cblock1)} =PLOT(5) =AXIS(1) =NAME(I_C_in) =UNITS(A)
.PLOT TRAN {v(Cblock1)} =PLOT(5) =AXIS(2) =NAME(U_C_in) =UNITS(V)
.PLOT TRAN {i(Cblock1)} =PLOT(5) =AXIS(1) =NAME(I_C_out) =UNITS(A)
.PLOT TRAN {v(Cblock1)} =PLOT(5) =AXIS(2) =NAME(U_C_out) =UNITS(V)
.PLOT TRAN {v(IN)} =PLOT(1) =AXIS(1) =NAME(U_IN) =UNITS(V) =RGB(0, 0, 255)
.PLOT TRAN {v(OUT)} =PLOT(2) =AXIS(1) =NAME(U_OUT) =UNITS(V) =RGB(255, 153, 0)
.OPTIONS METHOD=GEAR MAXORD=2
*Selected Circuit Analyses:
.TRAN 45.45u 22.73m 0 45.45u
.TRAN 90.91u 22.73m 0 90.91u
*Global Parameters:
.PARAM POS={1}
*Models and Subcircuits:
*TL074
*Quad LoNoise JFETInput OpAmp pkg:DIP14
*+ (A:3,2,4,11,1)(B:5,6,4,11,7)(C:10,9,4,11,8)(D:12,13,4,11,14)
* Connections:
* Non-Inverting Input
* | Inverting Input
* | | Positive Power Supply
* | | | Negative Power Supply
* | | | | Output
* | | | | |
.SUBCKT TL074 1 2 3 4 5
C1 11 12 3.498E-12
C2 6 7 15E-12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
BGND 99 0 V=V(3)*.5 + V(4)*.5
BB 7 99 I=I(VB)*4.715E6 - I(VC)*5E6 + I(VE)*5E6 +
+ I(VLP)*5E6 - I(VLN)*5E6
GA 6 0 11 12 282.8E-6
GCM 0 6 10 99 8.942E-9
ISS 3 10 DC 195E-6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100E3
RD1 4 11 3.536E3
RD2 4 12 3.536E3
RO1 8 5 150
RO2 7 99 150
RP 3 4 2.143E3
RSS 10 99 1.026E6
VB 9 0 DC 0
VC 3 53 DC 2.2
VE 54 4 DC 2.2
VLIM 7 8 DC 0
VLP 91 0 DC 25
VLN 0 92 DC 25
.MODEL DX D(IS=800E-18)
.MODEL JX PJF(IS=15E-12 BETA=270.1E-6 VTO=-1)
.ENDS TL074
*TopSPICE library: Models\MISCSEMI.MDB
*PART NUMBER: LM386
*MODEL NAME: LM386
*SYMBOL: X8PIN
*
*LM386 Audio power amplifier
* /*
* 1. The following model behavior shows good agreement with the
@@ -174,18 +108,4 @@ q14 out 10018 gnd ddnpn 100
+ Tf=1n Itf=1 Xtf=0 Vtf=10)
.ends LM386
*2N2907 MCE 5-27-97
*Ref: Motorola Small-Signal Device databook, Q4/94
*Si 400mW 40V 600mA 250MHz GenPurp pkg:TO-18 3,2,1
.MODEL 2N2907 PNP (IS=60.9F NF=1 BF=260 VAF=114 IKF=0.36 ISE=30.2P NE=2
+ BR=4 NR=1 VAR=20 IKR=0.54 RE=85.8M RB=0.343 RC=34.3M XTB=1.5
+ CJE=27.6P VJE=1.1 MJE=0.5 CJC=15.3P VJC=0.3 MJC=0.3 TF=636P TR=442N)
*2N2222 MCE 5-20-97
*Ref: Motorola Small-Signal Device Databook, Q4/94
*Si 400mW 30V 800mA 300MHz GenPurp pkg:TO-18 3,2,1
.MODEL 2N2222 NPN (IS=81.2F NF=1 BF=195 VAF=98.6 IKF=0.48 ISE=53.7P NE=2
+ BR=4 NR=1 VAR=20 IKR=0.72 RE=64.4M RB=0.258 RC=25.8M XTB=1.5
+ CJE=89.5P VJE=1.1 MJE=0.5 CJC=28.9P VJC=0.3 MJC=0.3 TF=530P TR=368N)
.END

View File

@@ -7,4 +7,4 @@ From : Project [ETOTH-Amp_LM386.PrjPcb]
Files Generated : 1
Documents Printed : 0
Finished Output Generation At 08:00:57 On 21.11.2025
Finished Output Generation At 11:00:20 On 28.11.2025

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -7,4 +7,4 @@ From : Project [TRI-SQR-VCO_OTA_SS.PrjPcb]
Files Generated : 1
Documents Printed : 0
Finished Output Generation At 21:27:47 On 23.10.2025
Finished Output Generation At 12:23:27 On 28.11.2025

View File

@@ -1,170 +1,79 @@
TRI-SQR-VCO_OTA_SS
*SPICE Netlist generated by Advanced Sim server on 18.11.2025 14:07:43
*SPICE Netlist generated by Advanced Sim server on 02.12.2025 15:10:05
.options MixedSimGenerated
*Schematic Netlist:
CC NetC_1 0 4.7nF
CC NetC_1 VCM 4.7nF
CC_an NetC_an_1 NetC_an_2 1nF
XIC1A NetIC1_16 NetIC1_15 U_SQR_OTA 0 NetC_1 GND NetC_1 U_TRI ExtraNet_XIC1A_9
XIC1A NetIC1_16 NetIC1_15 U_SQR_OTA VCM NetC_1 0 NetC_1 U_TRI ExtraNet_XIC1A_9
+ ExtraNet_XIC1A_10 VAP U_SQR_OTA U_TRI U_SQR_OTA NetIC1_2 NetIC1_1 LM13700-DUAL
XIC1B NetIC1_16 NetIC1_15 U_SQR_OTA 0 NetC_1 GND NetC_1 U_TRI ExtraNet_XIC1B_9
XIC1B NetIC1_16 NetIC1_15 U_SQR_OTA VCM NetC_1 0 NetC_1 U_TRI ExtraNet_XIC1B_9
+ ExtraNet_XIC1B_10 VAP U_SQR_OTA U_TRI U_SQR_OTA NetIC1_2 NetIC1_1 LM13700-DUAL
XIC1C NetIC1_16 NetIC1_15 U_SQR_OTA 0 NetC_1 GND NetC_1 U_TRI ExtraNet_XIC1C_9
XIC1C NetIC1_16 NetIC1_15 U_SQR_OTA VCM NetC_1 0 NetC_1 U_TRI ExtraNet_XIC1C_9
+ ExtraNet_XIC1C_10 VAP U_SQR_OTA U_TRI U_SQR_OTA NetIC1_2 NetIC1_1 LM13700-DUAL
XIC1E NetIC1_16 NetIC1_15 U_SQR_OTA 0 NetC_1 GND NetC_1 U_TRI ExtraNet_XIC1E_9
XIC1E NetIC1_16 NetIC1_15 U_SQR_OTA VCM NetC_1 0 NetC_1 U_TRI ExtraNet_XIC1E_9
+ ExtraNet_XIC1E_10 VAP U_SQR_OTA U_TRI U_SQR_OTA NetIC1_2 NetIC1_1 LM13700-DUAL
XIC2A U_SQR_OTA U_SQR VAP GND U_SQR TL074
XIC2B 0 NetC_an_1 VAP GND NetIC2_7 TL074
XIC2C 0 NetIC2_9 VAP GND U_C TL074
XIC2D NetIC2_12 NetIC2_13 VAP GND U_SAW TL074
XIC3A 0 NetIC3_2 VAP GND U_in TL074
XIC3B U_SAW NetIC3_6 VAP GND NetIC3_7 TL074
XICSA R.VMID NetICS_2 VAP GND NetICS_2 LF411
XICSB R.VMID NetICS_2 VAP GND NetICS_2 LF411
RR2 GND U_TRI 22k
XIC2A U_SQR_OTA U_SQR VAP 0 U_SQR TL074
XIC2B VCM NetC_an_1 VAP 0 NetIC2_7 TL074
XIC2C NetIC2_10 NetIC2_9 VAP 0 U_CV TL074
XIC2D NetIC2_12 NetIC2_13 VAP 0 U_SAW TL074
XIC3A VCM NetIC3_2 VAP 0 U_in TL074
XIC3B U_SAW NetIC3_6 VAP 0 NetIC3_7 TL074
XIC3C VCM NetIC3_9 VAP 0 U_C TL074
XICSA R.VMID NetICS_2 VAP 0 NetICS_2 LF411
XICSB R.VMID NetICS_2 VAP 0 NetICS_2 LF411
RR2 0 U_TRI 22k
RR3 VAP NetIC1_1 15k
RR4a NetIC3_2 U_TRI 100k
RR4b U_in NetIC3_2 50k
RR_A 0 U_SQR_OTA 3.63k
RR_CV NetR_CV_1 NetIC2_9 59.941k
RR_A VCM U_SQR_OTA 3.63k
RR_CV U_CV NetIC3_9 55k
RR_E NetC_an_2 NetR_E_2 10k
RR_lambda_T NetIC2_9 U_C 1.1k
RR_PWM_a GND NetIC3_6 15k
RR_lambda_T NetIC3_9 U_C 1k
RR_off_a VCM NetIC2_10 1k
RR_off_b NetIC2_9 U_CV 1k
RR_off_c 0 NetIC2_9 1k
RR_off_d NetR_off_d_1 NetIC2_10 1k
RR_PWM_a 0 NetIC3_6 15k
RR_PWM_b NetIC3_6 VAP 10k
RR_PWM_c U_PWM NetIC3_7 1k
RR_PWM_d 0 U_PWM 2k
RR_ref NetC_an_1 GND 524.8k
RR_PWM_d VCM U_PWM 2k
RR_ref NetC_an_1 0 524.8k
RR_S1 R.VMID VAP 220k
RR_S2 GND R.VMID 220k
RR_S2 0 R.VMID 220k
RR_SAW_a NetIC2_13 U_in 10k
RR_SAW_b NetIC2_12 U_in 10k
RR_SAW_c U_SAW NetIC2_13 10k
RR_SAW_e U_SQR fet_gate 33k
RR_SAW_f GND fet_gate 100k
RRoff NetIC3_2 GND 250k
QT1 NetC_an_1 0 NetC_an_2 2N2907
RR_SAW_f 0 fet_gate 100k
RRoff NetIC3_2 0 250k
QT1 NetC_an_1 VCM NetC_an_2 2N2907
QT2 NetT2_3 U_C NetC_an_2 2N2907
JT_SAW 0 fet_gate NetIC2_12 BF256B
JT_SAW VCM fet_gate NetIC2_12 BF256B
VU_mess NetT2_3 NetIC1_16 0
VU_MESSITOGND NetICS_2 0 0
VU_MESSITOGND NetICS_2 VCM 0
VU_messref NetR_E_2 NetIC2_7 0
VU_single VAP GND +10V
VU_var NetR_CV_1 0 1
VU_single VAP 0 +10V
VU_var NetR_off_d_1 0 1
.PLOT TRAN {v(U_SQR)} =PLOT(1) =AXIS(1) =NAME(U_SQR) =UNITS(V)
.PLOT TRAN {v(U_TRI)} =PLOT(2) =AXIS(1) =NAME(U_TRI) =UNITS(V)
.PLOT TRAN {v(U_SAW)} =PLOT(3) =AXIS(1) =NAME(U_SAW) =UNITS(V)
.PLOT TRAN {v(U_PWM)} =PLOT(4) =AXIS(1) =NAME(U_PWM) =UNITS(V)
.PLOT TRAN {i(U_mess)} =PLOT(5) =AXIS(1) =NAME(I_GND) =UNITS(A)
.PLOT TRAN {v(U_in)} =PLOT(2) =AXIS(1) =NAME(U_in) =UNITS(V)
.PLOT TRAN {v(U_C)} =PLOT(5) =AXIS(1) =NAME(Uc) =UNITS(V)
.PLOT TRAN {i(U_mess)} =PLOT(6) =AXIS(1) =NAME(i_abc) =UNITS(A)
.OPTIONS ABSTOL=1e-10 RELTOL=1e-2 VNTOL=1e-4 METHOD=GEAR MAXORD=2
*Selected Circuit Analyses:
.TRAN 25u 20m 5m 25u UIC
.TRAN 10u 20m 5m 10u
.CONTROL
SWEEP U_var LIST 1
.ENDC
*Global Parameters:
.PARAM POS=0
*Models and Subcircuits:
* A dual opamp ngspice model
* file name: LM13700-DUAL.ckt
.subckt LM13700-DUAL 1ABin 1DBias 1in+ 1in- 1out vcc- 1Bin 1Bout 2Bout 2Bin vcc+
+ 2out 2in- 2in+ 2Dbias 2ABin
*//////////////////////////////////////////////////////////////////////
* (C) National Semiconductor, Inc.
* Models developed and under copyright by:
* National Semiconductor, Inc.
*/////////////////////////////////////////////////////////////////////
* Legal Notice: This material is intended for free software support.
* The file may be copied, and distributed; however, reselling the
* material is illegal
*////////////////////////////////////////////////////////////////////
* For ordering or technical information on these models, contact:
* National Semiconductor's Customer Response Center
* 7:00 A.M.--7:00 P.M. U.S. Central Time
* (800) 272-9959
* For Applications support, contact the Internet address:
* amps-apps@galaxy.nsc.com
* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
* LM13700 Dual Operational Transconductance Amplifier
* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
*
* Amplifier Bias Input
* | Diode Bias
* | | Positive Input
* | | | Negative Input
* | | | | Output
* | | | | | Negative power supply
* | | | | | | Buffer Input
* | | | | | | | Buffer Output
* | | | | | | | | Positive power supply
* | | | | | | | | |
.SUBCKT LM13700/NS 1 2 3 4 5 6 7 8 11
*
* Features:
* gm adjustable over 6 decades.
* Excellent gm linearity.
* Linearizing diodes.
* Wide supply range of +/-2V to +/-22V.
*
* Note: This model is single-pole in nature and over-estimates
* AC bandwidth and phase margin (stability) by over 2X.
* Although refinement may be possible in the future, please
* use benchtesting to finalize AC circuit design.
*
* Note: Model is for single device only and simulated
* supply current is 1/2 of total device current.
*
******************************************************
*
C1 6 4 4.8P
C2 3 6 4.8P
* Output capacitor
C3 5 6 6.26P
D1 2 4 DX
D2 2 3 DX
D3 11 21 DX
D4 21 22 DX
D5 1 26 DX
D6 26 27 DX
D7 5 29 DX
D8 28 5 DX
D10 31 25 DX
* Clamp for -CMR
D11 28 25 DX
* Ios source
F1 4 3 POLY(1) V6 1E-10 5.129E-2 -1.189E4 1.123E9
F2 11 5 V2 1.022
F3 25 6 V3 1.0
F4 5 6 V1 1.022
* Output impedance
F5 5 0 POLY(2) V3 V7 0 0 0 0 1
G1 0 33 5 0 .55E-3
I1 11 6 300U
Q1 24 32 31 QX1
Q2 23 3 31 QX2
Q3 11 7 30 QZ
Q4 11 30 8 QY
V1 22 24 0V
V2 22 23 0V
V3 27 6 0V
V4 11 29 1.4
V5 28 6 1.2
V6 4 32 0V
V7 33 0 0V
.MODEL QX1 NPN (IS=5E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2)
.MODEL QX2 NPN (IS=5.125E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2)
.MODEL QY NPN (IS=6E-15 BF=50)
.MODEL QZ NPN (IS=5E-16 BF=266)
.MODEL DX D (IS=5E-16)
.ENDS
*$
XU1C 1ABin 1DBias 1in+ 1in- 1out vcc- 1Bin 1Bout vcc+ LM13700/NS
XU1A 2ABin 2DBias 2in+ 2in- 2out vcc- 2Bin 2Bout vcc+ LM13700/NS
.ends
*TL074
*Quad LoNoise JFETInput OpAmp pkg:DIP14
*+ (A:3,2,4,11,1)(B:5,6,4,11,7)(C:10,9,4,11,8)(D:12,13,4,11,14)
@@ -332,4 +241,104 @@ D3 15 24 DX
+ FC = 5.00000E-001
+)
*Cached Models and Subcircuits:
* A dual opamp ngspice model
* file name: LM13700-DUAL.ckt
.subckt LM13700-DUAL 1ABin 1DBias 1in+ 1in- 1out vcc- 1Bin 1Bout 2Bout 2Bin vcc+
+ 2out 2in- 2in+ 2Dbias 2ABin
*//////////////////////////////////////////////////////////////////////
* (C) National Semiconductor, Inc.
* Models developed and under copyright by:
* National Semiconductor, Inc.
*/////////////////////////////////////////////////////////////////////
* Legal Notice: This material is intended for free software support.
* The file may be copied, and distributed; however, reselling the
* material is illegal
*////////////////////////////////////////////////////////////////////
* For ordering or technical information on these models, contact:
* National Semiconductor's Customer Response Center
* 7:00 A.M.--7:00 P.M. U.S. Central Time
* (800) 272-9959
* For Applications support, contact the Internet address:
* amps-apps@galaxy.nsc.com
* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
* LM13700 Dual Operational Transconductance Amplifier
* \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
*
* Amplifier Bias Input
* | Diode Bias
* | | Positive Input
* | | | Negative Input
* | | | | Output
* | | | | | Negative power supply
* | | | | | | Buffer Input
* | | | | | | | Buffer Output
* | | | | | | | | Positive power supply
* | | | | | | | | |
.SUBCKT LM13700/NS 1 2 3 4 5 6 7 8 11
*
* Features:
* gm adjustable over 6 decades.
* Excellent gm linearity.
* Linearizing diodes.
* Wide supply range of +/-2V to +/-22V.
*
* Note: This model is single-pole in nature and over-estimates
* AC bandwidth and phase margin (stability) by over 2X.
* Although refinement may be possible in the future, please
* use benchtesting to finalize AC circuit design.
*
* Note: Model is for single device only and simulated
* supply current is 1/2 of total device current.
*
******************************************************
*
C1 6 4 4.8P
C2 3 6 4.8P
* Output capacitor
C3 5 6 6.26P
D1 2 4 DX
D2 2 3 DX
D3 11 21 DX
D4 21 22 DX
D5 1 26 DX
D6 26 27 DX
D7 5 29 DX
D8 28 5 DX
D10 31 25 DX
* Clamp for -CMR
D11 28 25 DX
* Ios source
F1 4 3 POLY(1) V6 1E-10 5.129E-2 -1.189E4 1.123E9
F2 11 5 V2 1.022
F3 25 6 V3 1.0
F4 5 6 V1 1.022
* Output impedance
F5 5 0 POLY(2) V3 V7 0 0 0 0 1
G1 0 33 5 0 .55E-3
I1 11 6 300U
Q1 24 32 31 QX1
Q2 23 3 31 QX2
Q3 11 7 30 QZ
Q4 11 30 8 QY
V1 22 24 0V
V2 22 23 0V
V3 27 6 0V
V4 11 29 1.4
V5 28 6 1.2
V6 4 32 0V
V7 33 0 0V
.MODEL QX1 NPN (IS=5E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2)
.MODEL QX2 NPN (IS=5.125E-16 BF=200 NE=1.15 ISE=.63E-16 IKF=1E-2)
.MODEL QY NPN (IS=6E-15 BF=50)
.MODEL QZ NPN (IS=5E-16 BF=266)
.MODEL DX D (IS=5E-16)
.ENDS
*$
XU1C 1ABin 1DBias 1in+ 1in- 1out vcc- 1Bin 1Bout vcc+ LM13700/NS
XU1A 2ABin 2DBias 2in+ 2in- 2out vcc- 2Bin 2Bout vcc+ LM13700/NS
.ends
.END

File diff suppressed because one or more lines are too long

Some files were not shown because too many files have changed in this diff Show More